Mishra, Chinmaya
Perception of Emotions in Human and Robot Faces: Is the Eye Region Enough?
Mishra, Chinmaya, Skantze, Gabriel, Hagoort, Peter, Verdonschot, Rinus
The increased interest in developing next-gen social robots has raised questions about the factors affecting the perception of robot emotions. This study investigates the impact of robot appearances (humanlike, mechanical) and face regions (full-face, eye-region) on human perception of robot emotions. A between-subjects user study (N = 305) was conducted where participants were asked to identify the emotions being displayed in videos of robot faces, as well as a human baseline. Our findings reveal three important insights for effective social robot face design in Human-Robot Interaction (HRI): Firstly, robots equipped with a back-projected, fully animated face - regardless of whether they are more human-like or more mechanical-looking - demonstrate a capacity for emotional expression comparable to that of humans. Secondly, the recognition accuracy of emotional expressions in both humans and robots declines when only the eye region is visible. Lastly, within the constraint of only the eye region being visible, robots with more human-like features significantly enhance emotion recognition.
HRI in Indian Education: Challenges Opportunities
Mishra, Chinmaya, Nandanwar, Anuj, Mishra, Sashikala
With the recent advancements in the field of robotics and the increased focus on having general-purpose robots widely available to the general public, it has become increasingly necessary to pursue research into Human-robot interaction (HRI). While there have been a lot of works discussing frameworks for teaching HRI in educational institutions with a few institutions already offering courses to students, a consensus on the course content still eludes the field. In this work, we highlight a few challenges and opportunities while designing an HRI course from an Indian perspective. These topics warrant further deliberations as they have a direct impact on the design of HRI courses and wider implications for the entire field.
A System for Automated Open-Source Threat Intelligence Gathering and Management
Gao, Peng, Liu, Xiaoyuan, Choi, Edward, Soman, Bhavna, Mishra, Chinmaya, Farris, Kate, Song, Dawn
Sophisticated cyber attacks have plagued many high-profile businesses. To remain aware of the fast-evolving threat landscape, open-source Cyber Threat Intelligence (OSCTI) has received growing attention from the community. Commonly, knowledge about threats is presented in a vast number of OSCTI reports. Despite the pressing need for high-quality OSCTI, existing OSCTI gathering and management platforms, however, have primarily focused on isolated, low-level Indicators of Compromise. On the other hand, higher-level concepts (e.g., adversary tactics, techniques, and procedures) and their relationships have been overlooked, which contain essential knowledge about threat behaviors that is critical to uncovering the complete threat scenario. To bridge the gap, we propose SecurityKG, a system for automated OSCTI gathering and management. SecurityKG collects OSCTI reports from various sources, uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors, and constructs a security knowledge graph. SecurityKG also provides a UI that supports various types of interactivity to facilitate knowledge graph exploration.