Goto

Collaborating Authors

 Mishra, Aditya


SPIRIT: Short-term Prediction of solar IRradIance for zero-shot Transfer learning using Foundation Models

arXiv.org Artificial Intelligence

Traditional solar forecasting models are based on several years of site-specific historical irradiance data, often spanning five or more years, which are unavailable for newer photovoltaic farms. As renewable energy is highly intermittent, building accurate solar irradiance forecasting systems is essential for efficient grid management and enabling the ongoing proliferation of solar energy, which is crucial to achieve the United Nations' net zero goals. In this work, we propose SPIRIT, a novel approach leveraging foundation models for solar irradiance forecasting, making it applicable to newer solar installations. Our approach outperforms state-of-the-art models in zero-shot transfer learning by about 70%, enabling effective performance at new locations without relying on any historical data. Further improvements in performance are achieved through fine-tuning, as more location-specific data becomes available. These findings are supported by statistical significance, further validating our approach. SPIRIT represents a pivotal step towards rapid, scalable, and adaptable solar forecasting solutions, advancing the integration of renewable energy into global power systems.


Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders

arXiv.org Artificial Intelligence

We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification. To enhance the model's adaptability to unseen subjects without extensive retraining, we introduce an attention-based adapter network for fine-tuning, which reduces the computational cost of adapting the model to new subjects. Our method significantly outperforms other deep learning approaches, achieving state-of-the-art results with a subject balanced accuracy of 89.81% on the ERP-Core dataset and 70.85% on the SleepEDFx-20 dataset. After subject adaptive fine-tuning using adapters and attention layers, GC-VASE further improves the subject balanced accuracy to 90.31% on ERP-Core. Additionally, we perform a detailed ablation study to highlight the impact of the key components of our method.


Patent Novelty Assessment Accelerating Innovation and Patent Prosecution

arXiv.org Artificial Intelligence

In the rapidly evolving landscape of technological innovation, safeguarding intellectual property rights through patents is crucial for fostering progress and stimulating research and development investments. This report introduces a ground-breaking Patent Novelty Assessment and Claim Generation System, meticulously crafted to dissect the inventive aspects of intellectual property and simplify access to extensive patent claim data. Addressing a crucial gap in academic institutions, our system provides college students and researchers with an intuitive platform to navigate and grasp the intricacies of patent claims, particularly tailored for the nuances of Chinese patents. Unlike conventional analysis systems, our initiative harnesses a proprietary Chinese API to ensure unparalleled precision and relevance. The primary challenge lies in the complexity of accessing and comprehending diverse patent claims, inhibiting effective innovation upon existing ideas. Our solution aims to overcome these barriers by offering a bespoke approach that seamlessly retrieves comprehensive claim information, finely tuned to the specifics of the Chinese patent landscape. By equipping users with efficient access to comprehensive patent claim information, our transformative platform seeks to ignite informed exploration and innovation in the ever-evolving domain of intellectual property. Its envisioned impact transcends individual colleges, nurturing an environment conducive to research and development while deepening the understanding of patented concepts within the academic community.


DECODE: Data-driven Energy Consumption Prediction leveraging Historical Data and Environmental Factors in Buildings

arXiv.org Artificial Intelligence

Energy prediction in buildings plays a crucial role in effective energy management. Precise predictions are essential for achieving optimal energy consumption and distribution within the grid. This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption using historical energy data, occupancy patterns, and weather conditions. The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings compared to existing prediction models. We compare our LSTM model with established prediction methods, including linear regression, decision trees, and random forest. Encouragingly, the proposed LSTM model emerges as the superior performer across all metrics. It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007. An additional advantage of our developed model is its capacity to achieve efficient energy consumption forecasts even when trained on a limited dataset. We address concerns about overfitting (variance) and underfitting (bias) through rigorous training and evaluation on real-world data. In summary, our research contributes to energy prediction by offering a robust LSTM model that outperforms alternative methods and operates with remarkable efficiency, generalizability, and reliability.


Using LSTM for the Prediction of Disruption in ADITYA Tokamak

arXiv.org Machine Learning

Major disruptions in tokamak pose a serious threat to the vessel and its surrounding pieces of equipment. The ability of the systems to detect any behavior that can lead to disruption can help in alerting the system beforehand and prevent its harmful effects. Many machine learning techniques have already been in use at large tokamaks like JET and ASDEX, but are not suitable for ADITYA, which is comparatively small. Through this work, we discuss a new real-time approach to predict the time of disruption in ADITYA tokamak and validate the results on an experimental dataset. The system uses selected diagnostics from the tokamak and after some pre-processing steps, sends them to a time-sequence Long Short-Term Memory (LSTM) network. The model can make the predictions 12 ms in advance at less computation cost that is quick enough to be deployed in real-time applications.