Mirmehdi, Majid
The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition
Brookes, Otto, Kukushkin, Maksim, Mirmehdi, Majid, Stephens, Colleen, Dieguez, Paula, Hicks, Thurston C., Jones, Sorrel, Lee, Kevin, McCarthy, Maureen S., Meier, Amelia, Normand, Emmanuelle, Wessling, Erin G., Wittig, Roman M., Langergraber, Kevin, Zuberbühler, Klaus, Boesch, Lukas, Schmid, Thomas, Arandjelovic, Mimi, Kühl, Hjalmar, Burghardt, Tilo
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
ChimpVLM: Ethogram-Enhanced Chimpanzee Behaviour Recognition
Brookes, Otto, Mirmehdi, Majid, Kuhl, Hjalmar, Burghardt, Tilo
We show that chimpanzee behaviour understanding from camera traps can be enhanced by providing visual architectures with access to an embedding of text descriptions that detail species behaviours. In particular, we present a vision-language model which employs multi-modal decoding of visual features extracted directly from camera trap videos to process query tokens representing behaviours and output class predictions. Query tokens are initialised using a standardised ethogram of chimpanzee behaviour, rather than using random or name-based initialisations. In addition, the effect of initialising query tokens using a masked language model fine-tuned on a text corpus of known behavioural patterns is explored. We evaluate our system on the PanAf500 and PanAf20K datasets and demonstrate the performance benefits of our multi-modal decoding approach and query initialisation strategy on multi-class and multi-label recognition tasks, respectively. Results and ablations corroborate performance improvements. We achieve state-of-the-art performance over vision and vision-language models in top-1 accuracy (+6.34%) on PanAf500 and overall (+1.1%) and tail-class (+2.26%) mean average precision on PanAf20K. We share complete source code and network weights for full reproducibility of results and easy utilisation.
Video-SwinUNet: Spatio-temporal Deep Learning Framework for VFSS Instance Segmentation
Zeng, Chengxi, Yang, Xinyu, Smithard, David, Mirmehdi, Majid, Gambaruto, Alberto M, Burghardt, Tilo
This paper presents a deep learning framework for medical video segmentation. Convolution neural network (CNN) and transformer-based methods have achieved great milestones in medical image segmentation tasks due to their incredible semantic feature encoding and global information comprehension abilities. However, most existing approaches ignore a salient aspect of medical video data - the temporal dimension. Our proposed framework explicitly extracts features from neighbouring frames across the temporal dimension and incorporates them with a temporal feature blender, which then tokenises the high-level spatio-temporal feature to form a strong global feature encoded via a Swin Transformer. The final segmentation results are produced via a UNet-like encoder-decoder architecture. Our model outperforms other approaches by a significant margin and improves the segmentation benchmarks on the VFSS2022 dataset, achieving a dice coefficient of 0.8986 and 0.8186 for the two datasets tested. Our studies also show the efficacy of the temporal feature blending scheme and cross-dataset transferability of learned capabilities. Code and models are fully available at https://github.com/SimonZeng7108/Video-SwinUNet.
Triple-stream Deep Metric Learning of Great Ape Behavioural Actions
Brookes, Otto, Mirmehdi, Majid, Kühl, Hjalmar, Burghardt, Tilo
We propose the first metric learning system for the recognition of great ape behavioural actions. Our proposed triple stream embedding architecture works on camera trap videos taken directly in the wild and demonstrates that the utilisation of an explicit DensePose-C chimpanzee body part segmentation stream effectively complements traditional RGB appearance and optical flow streams. We evaluate system variants with different feature fusion techniques and long-tail recognition approaches. Results and ablations show performance improvements of ~12% in top-1 accuracy over previous results achieved on the PanAf-500 dataset containing 180,000 manually annotated frames across nine behavioural actions. Furthermore, we provide a qualitative analysis of our findings and augment the metric learning system with long-tail recognition techniques showing that average per class accuracy -- critical in the domain -- can be improved by ~23% compared to the literature on that dataset. Finally, since our embedding spaces are constructed as metric, we provide first data-driven visualisations of the great ape behavioural action spaces revealing emerging geometry and topology. We hope that the work sparks further interest in this vital application area of computer vision for the benefit of endangered great apes.