Miranda, Enrique
Nonlinear desirability theory
Miranda, Enrique, Zaffalon, Marco
Desirability can be understood as an extension of Anscombe and Aumann's Bayesian decision theory to sets of expected utilities. At the core of desirability lies an assumption of linearity of the scale in which rewards are measured. It is a traditional assumption used to derive the expected utility model, which clashes with a general representation of rational decision making, though. Allais has, in particular, pointed this out in 1953 with his famous paradox. We note that the utility scale plays the role of a closure operator when we regard desirability as a logical theory. This observation enables us to extend desirability to the nonlinear case by letting the utility scale be represented via a general closure operator. The new theory directly expresses rewards in actual nonlinear currency (money), much in Savage's spirit, while arguably weakening the founding assumptions to a minimum. We characterise the main properties of the new theory both from the perspective of sets of gambles and of their lower and upper prices (previsions). We show how Allais paradox finds a solution in the new theory, and discuss the role of sets of probabilities in the theory.
Axiomatising Incomplete Preferences through Sets of Desirable Gambles
Zaffalon, Marco, Miranda, Enrique
We establish the equivalence of two very general theories: the first is the decision-theoretic formalisation of incomplete preferences based on the mixture independence axiom; the second is the theory of coherent sets of desirable gambles (bounded variables) developed in the context of imprecise probability and extended here to vector-valued gambles. Such an equivalence allows us to analyse the theory of incomplete preferences from the point of view of desirability. Among other things, this leads us to uncover an unexpected and clarifying relation: that the notion of `state independence'---the traditional assumption that we can have separate models for beliefs (probabilities) and values (utilities)---coincides with that of `strong independence' in imprecise probability; this connection leads us also to propose much weaker, and arguably more realistic, notions of state independence. Then we simplify the treatment of complete beliefs and values by putting them on a more equal footing. We study the role of the Archimedean condition---which allows us to actually talk of expected utility---, identify some weaknesses and propose alternatives that solve these. More generally speaking, we show that desirability is a valuable alternative foundation to preferences for decision theory that streamlines and unifies a number of concepts while preserving great generality. In addition, the mentioned equivalence shows for the first time how to extend the theory of desirability to imprecise non-linear utility, thus enabling us to formulate one of the most powerful self-consistent theories of reasoning and decision-making available today.
Desirability and the birth of incomplete preferences
Zaffalon, Marco, Miranda, Enrique
We establish an equivalence between two seemingly different theories: one is the traditional axiomatisation of incomplete preferences on horse lotteries based on the mixture independence axiom; the other is the theory of desirable gambles developed in the context of imprecise probability. The equivalence allows us to revisit incomplete preferences from the viewpoint of desirability and through the derived notion of coherent lower previsions. On this basis, we obtain new results and insights: in particular, we show that the theory of incomplete preferences can be developed assuming only the existence of a worst act---no best act is needed---, and that a weakened Archimedean axiom suffices too; this axiom allows us also to address some controversy about the regularity assumption (that probabilities should be positive---they need not), which enables us also to deal with uncountable possibility spaces; we show that it is always possible to extend in a minimal way a preference relation to one with a worst act, and yet the resulting relation is never Archimedean, except in a trivial case; we show that the traditional notion of state independence coincides with the notion called strong independence in imprecise probability---this leads us to give much a weaker definition of state independence than the traditional one; we rework and uniform the notions of complete preferences, beliefs, values; we argue that Archimedeanity does not capture all the problems that can be modelled with sets of expected utilities and we provide a new notion that does precisely that. Perhaps most importantly, we argue throughout that desirability is a powerful and natural setting to model, and work with, incomplete preferences, even in case of non-Archimedean problems. This leads us to suggest that desirability, rather than preference, should be the primitive notion at the basis of decision-theoretic axiomatisations.
Conservative Inference Rule for Uncertain Reasoning under Incompleteness
Zaffalon, Marco, Miranda, Enrique
In this paper we formulate the problem of inference under incomplete information in very general terms. This includes modelling the process responsible for the incompleteness, which we call the incompleteness process. We allow the process behaviour to be partly unknown. Then we use Walleys theory of coherent lower previsions, a generalisation of the Bayesian theory to imprecision, to derive the rule to update beliefs under incompleteness that logically follows from our assumptions, and that we call conservative inference rule. This rule has some remarkable properties: it is an abstract rule to update beliefs that can be applied in any situation or domain; it gives us the opportunity to be neither too optimistic nor too pessimistic about the incompleteness process, which is a necessary condition to draw reliable while strong enough conclusions; and it is a coherent rule, in the sense that it cannot lead to inconsistencies. We give examples to show how the new rule can be applied in expert systems, in parametric statistical inference, and in pattern classification, and discuss more generally the view of incompleteness processes defended here as well as some of its consequences.