Goto

Collaborating Authors

 Mingming Gong


Twin Auxilary Classifiers GAN

Neural Information Processing Systems

Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.


Likelihood-Free Overcomplete ICA and Applications In Causal Discovery

Neural Information Processing Systems

Causal discovery witnessed significant progress over the past decades. In particular, many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult; whenever they are present, the corresponding causal discovery algorithms can be seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components.


Twin Auxilary Classifiers GAN

Neural Information Processing Systems

Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.


Likelihood-Free Overcomplete ICA and Applications In Causal Discovery

Neural Information Processing Systems

Causal discovery witnessed significant progress over the past decades. In particular, many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult; whenever they are present, the corresponding causal discovery algorithms can be seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components.


Modeling Dynamic Missingness of Implicit Feedback for Recommendation

Neural Information Processing Systems

Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are missing not at random (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users' negative preferences. Recent studies modeled exposure, a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named "user intent" to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of user intents. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems.