Goto

Collaborating Authors

 Mingkui Tan



NAT: Neural Architecture Transformer for Accurate and Compact Architectures

Neural Information Processing Systems

Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.


Multi-marginal Wasserstein GAN

Neural Information Processing Systems

Multiple marginal matching problem aims at learning mappings to match a source domain to multiple target domains and it has attracted great attention in many applications, such as multi-domain image translation. However, addressing this problem has two critical challenges: (i) Measuring the multi-marginal distance among different domains is very intractable; (ii) It is very difficult to exploit cross-domain correlations to match the target domain distributions. In this paper, we propose a novel Multi-marginal Wasserstein GAN (MWGAN) to minimize Wasserstein distance among domains. Specifically, with the help of multi-marginal optimal transport theory, we develop a new adversarial objective function with innerand inter-domain constraints to exploit cross-domain correlations. Moreover, we theoretically analyze the generalization performance of MWGAN, and empirically evaluate it on the balanced and imbalanced translation tasks. Extensive experiments on toy and real-world datasets demonstrate the effectiveness of MWGAN.


Discrimination-aware Channel Pruning for Deep Neural Networks

Neural Information Processing Systems

Channel pruning is one of the predominant approaches for deep model compression. Existing pruning methods either train from scratch with sparsity constraints on channels, or minimize the reconstruction error between the pre-trained feature maps and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, whilst the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. In this paper, we investigate a simple-yet-effective method called discrimination-aware channel pruning (DCP) to choose those channels that really contribute to discriminative power. To this end, we introduce additional discrimination-aware losses into the network to increase the discriminative power of intermediate layers and then select the most discriminative channels for each layer by considering the additional loss and the reconstruction error. Last, we propose a greedy algorithm to conduct channel selection and parameter optimization in an iterative way. Extensive experiments demonstrate the effectiveness of our method. For example, on ILSVRC-12, our pruned ResNet-50 with 30% reduction of channels outperforms the baseline model by 0.39% in top-1 accuracy.


NAT: Neural Architecture Transformer for Accurate and Compact Architectures

Neural Information Processing Systems

Designing effective architectures is one of the key factors behind the success of deep neural networks. Existing deep architectures are either manually designed or automatically searched by some Neural Architecture Search (NAS) methods. However, even a well-searched architecture may still contain many non-significant or redundant modules or operations (e.g., convolution or pooling), which may not only incur substantial memory consumption and computation cost but also deteriorate the performance. Thus, it is necessary to optimize the operations inside an architecture to improve the performance without introducing extra computation cost. Unfortunately, such a constrained optimization problem is NP-hard. To make the problem feasible, we cast the optimization problem into a Markov decision process (MDP) and seek to learn a Neural Architecture Transformer (NAT) to replace the redundant operations with the more computationally efficient ones (e.g., skip connection or directly removing the connection). Based on MDP, we learn NAT by exploiting reinforcement learning to obtain the optimization policies w.r.t.


Multi-marginal Wasserstein GAN

Neural Information Processing Systems

Multiple marginal matching problem aims at learning mappings to match a source domain to multiple target domains and it has attracted great attention in many applications, such as multi-domain image translation. However, addressing this problem has two critical challenges: (i) Measuring the multi-marginal distance among different domains is very intractable; (ii) It is very difficult to exploit cross-domain correlations to match the target domain distributions. In this paper, we propose a novel Multi-marginal Wasserstein GAN (MWGAN) to minimize Wasserstein distance among domains. Specifically, with the help of multi-marginal optimal transport theory, we develop a new adversarial objective function with innerand inter-domain constraints to exploit cross-domain correlations. Moreover, we theoretically analyze the generalization performance of MWGAN, and empirically evaluate it on the balanced and imbalanced translation tasks. Extensive experiments on toy and real-world datasets demonstrate the effectiveness of MWGAN.