Goto

Collaborating Authors

 Ming-Hsuan Yang


Context-aware Synthesis and Placement of Object Instances

Neural Information Processing Systems

Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network. Code is available at https: //github.com/NVlabs/Instance_Insertion.


Quadratic Video Interpolation

Neural Information Processing Systems

Video interpolation is an important problem in computer vision, which helps overcome the temporal limitation of camera sensors. Existing video interpolation methods usually assume uniform motion between consecutive frames and use linear models for interpolation, which cannot well approximate the complex motion in the real world. To address these issues, we propose a quadratic video interpolation method which exploits the acceleration information in videos. This method allows prediction with curvilinear trajectory and variable velocity, and generates more accurate interpolation results. For high-quality frame synthesis, we develop a flow reversal layer to estimate flow fields starting from the unknown target frame to the source frame.


Dancing to Music

Neural Information Processing Systems

Dancing to music is an instinctive move by humans. Learning to model the music-to-dance generation process is, however, a challenging problem. It requires significant efforts to measure the correlation between music and dance as one needs to simultaneously consider multiple aspects, such as style and beat of both music and dance. Additionally, dance is inherently multimodal and various following movements of a pose at any moment are equally likely. In this paper, we propose a synthesis-by-analysis learning framework to generate dance from music. In the analysis phase, we decompose a dance into a series of basic dance units, through which the model learns how to move. In the synthesis phase, the model learns how to compose a dance by organizing multiple basic dancing movements seamlessly according to the input music. Experimental qualitative and quantitative results demonstrate that the proposed method can synthesize realistic, diverse, style-consistent, and beat-matching dances from music.


Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation

Neural Information Processing Systems

In this paper, we present a deep convolutional neural network to capture the inherent properties of image degradation, which can handle different kernels and saturated pixels in a unified framework. The proposed neural network is motivated by the low-rank property of pseudo-inverse kernels. Specifically, we first compute a generalized low-rank approximation to a large number of blur kernels, and then use separable filters to initialize the convolutional parameters in the network. Our analysis shows that the estimated decomposed matrices contain the most essential information of an input kernel, which ensures the proposed network to handle various blurs in a unified framework and generate high-quality deblurring results. Experimental results on benchmark datasets with noisy and saturated pixels demonstrate that the proposed deconvolution approach relying on generalized low-rank approximation performs favorably against the state-of-the-arts.


Joint-task Self-supervised Learning for Temporal Correspondence

Neural Information Processing Systems

This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions and establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region-and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet. The project website can be found at https://sites.google.com/view/uvc2019/.


Quadratic Video Interpolation

Neural Information Processing Systems

Video interpolation is an important problem in computer vision, which helps overcome the temporal limitation of camera sensors. Existing video interpolation methods usually assume uniform motion between consecutive frames and use linear models for interpolation, which cannot well approximate the complex motion in the real world. To address these issues, we propose a quadratic video interpolation method which exploits the acceleration information in videos. This method allows prediction with curvilinear trajectory and variable velocity, and generates more accurate interpolation results. For high-quality frame synthesis, we develop a flow reversal layer to estimate flow fields starting from the unknown target frame to the source frame.


Dancing to Music

Neural Information Processing Systems

Dancing to music is an instinctive move by humans. Learning to model the music-to-dance generation process is, however, a challenging problem. It requires significant efforts to measure the correlation between music and dance as one needs to simultaneously consider multiple aspects, such as style and beat of both music and dance. Additionally, dance is inherently multimodal and various following movements of a pose at any moment are equally likely. In this paper, we propose a synthesis-by-analysis learning framework to generate dance from music. In the analysis phase, we decompose a dance into a series of basic dance units, through which the model learns how to move. In the synthesis phase, the model learns how to compose a dance by organizing multiple basic dancing movements seamlessly according to the input music. Experimental qualitative and quantitative results demonstrate that the proposed method can synthesize realistic, diverse, style-consistent, and beat-matching dances from music.


Joint-task Self-supervised Learning for Temporal Correspondence

Neural Information Processing Systems

This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions and establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region-and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet. The project website can be found at https://sites.google.com/view/uvc2019/.


Learning Affinity via Spatial Propagation Networks

Neural Information Processing Systems

In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be outputs from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix.


Context-aware Synthesis and Placement of Object Instances

Neural Information Processing Systems

Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network. Code is available at https: //github.com/NVlabs/Instance_Insertion.