Goto

Collaborating Authors

 Millidge, Beren


Mixture-of-PageRanks: Replacing Long-Context with Real-Time, Sparse GraphRAG

arXiv.org Artificial Intelligence

Recent advances have extended the context window of frontier LLMs dramatically, from a few thousand tokens up to millions, enabling entire books and codebases to fit into context. However, the compute costs of inferencing long-context LLMs are massive and often prohibitive in practice. RAG offers an efficient and effective alternative: retrieve and process only the subset of the context most important for the current task. Although promising, recent work applying RAG to long-context tasks has two core limitations: 1) there has been little focus on making the RAG pipeline compute efficient, and 2) such works only test on simple QA tasks, and their performance on more challenging tasks is unclear. To address this, we develop an algorithm based on PageRank, a graph-based retrieval algorithm, which we call mixture-of-PageRanks (MixPR). MixPR uses a mixture of PageRank-based graph-retrieval algorithms implemented using sparse matrices for efficent, cheap retrieval that can deal with a variety of complex tasks. Our MixPR retriever achieves state-of-the-art results across a wide range of long-context benchmark tasks, outperforming both existing RAG methods, specialized retrieval architectures, and long-context LLMs despite being far more compute efficient. Due to using sparse embeddings, our retriever is extremely compute efficient, capable of embedding and retrieving millions of tokens within a few seconds and runs entirely on CPU.


The Zamba2 Suite: Technical Report

arXiv.org Artificial Intelligence

In this technical report, we present the Zamba2 series -- a suite of 1.2B, 2.7B, and 7.4B parameter hybrid Mamba2-transformer models that achieve state of the art performance against the leading open-weights models of their class, while achieving substantial gains in inference latency, throughput, and memory efficiency. The Zamba2 series builds upon our initial work with Zamba1-7B, optimizing its architecture, training and annealing datasets, and training for up to three trillion tokens. We provide open-source weights for all models of the Zamba2 series as well as instruction-tuned variants that are strongly competitive against comparable instruct-tuned models of their class. We additionally open-source the pretraining dataset, which we call Zyda-2, used to train the Zamba2 series of models. The models and datasets used in this work are openly available at https://huggingface.co/Zyphra


Zyda-2: a 5 Trillion Token High-Quality Dataset

arXiv.org Artificial Intelligence

Zyda-2 was used to train our Zamba2 series of models which are state-of-the-art for their weight class. We build Zyda-2 by collating high-quality open-source tokens such as FineWeb and DCLM, then distilling them to the highest-quality subset via cross-deduplication and model-based quality filtering. Zyda-2 is released under a permissive open license, and is available at https://huggingface.co/datasets/Zyphra/Zyda-2.


Toward Conversational Agents with Context and Time Sensitive Long-term Memory

arXiv.org Artificial Intelligence

There has recently been growing interest in conversational agents with long-term memory which has led to the rapid development of language models that use retrieval-augmented generation (RAG). Until recently, most work on RAG has focused on information retrieval from large databases of texts, like Wikipedia, rather than information from long-form conversations. In this paper, we argue that effective retrieval from long-form conversational data faces two unique problems compared to static database retrieval: 1) time/event-based queries, which requires the model to retrieve information about previous conversations based on time or the order of a conversational event (e.g., the third conversation on Tuesday), and 2) ambiguous queries that require surrounding conversational context to understand. To better develop RAG-based agents that can deal with these challenges, we generate a new dataset of ambiguous and time-based questions that build upon a recent dataset of long-form, simulated conversations, and demonstrate that standard RAG based approaches handle such questions poorly. We then develop a novel retrieval model which combines chained-of-table search methods, standard vector-database retrieval, and a prompting method to disambiguate queries, and demonstrate that this approach substantially improves over current methods at solving these tasks. We believe that this new dataset and more advanced RAG agent can act as a key benchmark and stepping stone towards effective memory augmented conversational agents that can be used in a wide variety of AI applications.


Zyda: A 1.3T Dataset for Open Language Modeling

arXiv.org Artificial Intelligence

The size of large language models (LLMs) has scaled dramatically in recent years and their computational and data requirements have surged correspondingly. State-of-the-art language models, even at relatively smaller sizes, typically require training on at least a trillion tokens. This rapid advancement has eclipsed the growth of open-source datasets available for large-scale LLM pretraining. In this paper, we introduce Zyda (Zyphra Dataset), a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus. We apply rigorous filtering and deduplication processes, both within and across datasets, to maintain and enhance the quality derived from the original datasets. Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite. Our rigorous data processing methods significantly enhance Zyda's effectiveness, outperforming even the best of its constituent datasets when used independently.


Zamba: A Compact 7B SSM Hybrid Model

arXiv.org Artificial Intelligence

In this technical report, we present Zamba, a novel 7B SSM-transformer hybrid model which achieves competitive performance against leading open-weight models at a comparable scale. Zamba is trained on 1T tokens from openly available datasets and is the best non-transformer model at this scale. Zamba pioneers a unique architecture combining a Mamba backbone with a single shared attention module, thus obtaining the benefits of attention at minimal parameter cost. Due to its architecture, Zamba is significantly faster at inference than comparable transformer models and requires substantially less memory for generation of long sequences. Zamba is pretrained in two phases: the first phase is based on existing web datasets, while the second one consists of annealing the model over high-quality instruct and synthetic datasets, and is characterized by a rapid learning rate decay. We open-source the weights and all checkpoints for Zamba, through both phase 1 and annealing phases.


Associative Memories in the Feature Space

arXiv.org Artificial Intelligence

An autoassociative memory model is a function that, given a set of data points, takes as input an arbitrary vector and outputs the most similar data point from the memorized set. However, popular memory models fail to retrieve images even when the corruption is mild and easy to detect for a human evaluator. This is because similarities are evaluated in the raw pixel space, which does not contain any semantic information about the images. This problem can be easily solved by computing \emph{similarities} in an embedding space instead of the pixel space. We show that an effective way of computing such embeddings is via a network pretrained with a contrastive loss. As the dimension of embedding spaces is often significantly smaller than the pixel space, we also have a faster computation of similarity scores. We test this method on complex datasets such as CIFAR10 and STL10. An additional drawback of current models is the need of storing the whole dataset in the pixel space, which is often extremely large. We relax this condition and propose a class of memory models that only stores low-dimensional semantic embeddings, and uses them to retrieve similar, but not identical, memories. We demonstrate a proof of concept of this method on a simple task on the MNIST dataset.


A Review of Neuroscience-Inspired Machine Learning

arXiv.org Artificial Intelligence

One major criticism of deep learning centers around the biological implausibility of the credit assignment schema used for learning -- backpropagation of errors. This implausibility translates into practical limitations, spanning scientific fields, including incompatibility with hardware and non-differentiable implementations, thus leading to expensive energy requirements. In contrast, biologically plausible credit assignment is compatible with practically any learning condition and is energy-efficient. As a result, it accommodates hardware and scientific modeling, e.g. learning with physical systems and non-differentiable behavior. Furthermore, it can lead to the development of real-time, adaptive neuromorphic processing systems. In addressing this problem, an interdisciplinary branch of artificial intelligence research that lies at the intersection of neuroscience, cognitive science, and machine learning has emerged. In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks, discussing the solutions they provide for different scientific fields as well as their advantages on CPUs, GPUs, and novel implementations of neuromorphic hardware. We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.


BlackMamba: Mixture of Experts for State-Space Models

arXiv.org Artificial Intelligence

State-space models (SSMs) have recently demonstrated competitive performance to transformers at large-scale language modeling benchmarks while achieving linear time and memory complexity as a function of sequence length. Mamba, a recently released SSM model, shows impressive performance in both language modeling and long sequence processing tasks. Simultaneously, mixture-of-expert (MoE) models have shown remarkable performance while significantly reducing the compute and latency costs of inference at the expense of a larger memory footprint. In this paper, we present BlackMamba, a novel architecture that combines the Mamba SSM with MoE to obtain the benefits of both. We demonstrate that BlackMamba performs competitively against both Mamba and transformer baselines, and outperforms in inference and training FLOPs. We fully train and open-source 340M/1.5B and 630M/2.8B BlackMamba models on 300B tokens of a custom dataset. We show that BlackMamba inherits and combines both of the benefits of SSM and MoE architectures, combining linear-complexity generation from SSM with cheap and fast inference from MoE. We release all weights, checkpoints, and inference code open-source. Inference code at: https://github.com/Zyphra/BlackMamba


Collective behavior from surprise minimization

arXiv.org Artificial Intelligence

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and 'social forces' such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modelling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically-observed collective phenomena, including cohesion, milling and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference -- without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal non-trivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.