Miller, Kenneth D.
Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
Eisele, Michael, Miller, Kenneth D.
Cortical synaptic plasticity depends on the relative timing of pre-and postsynaptic spikes and also on the temporal pattern of presynaptic spikes and of postsynaptic spikes. We study the hypothesis that cortical synaptic plasticity does not associate individual spikes, but rather whole firing episodes, and depends only on when these episodes start and how long they last, but as little as possible on the timing of individual spikes. Here we present the mathematical background for such a study. Standard methods from hidden Markov models are used to define what "firing episodes" are. Estimating the probability of being in such an episode requires not only the knowledge of past spikes, but also of future spikes. We show how to construct a causal learning rule, which depends only on past spikes, but associates pre-and postsynaptic firing episodes as if it also knew future spikes. We also show that this learning rule agrees with some features of synaptic plasticity in superficial layers of rat visual cortex (Froemke and Dan, Nature 416:433, 2002).
Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule
Eisele, Michael, Miller, Kenneth D.
Cortical synaptic plasticity depends on the relative timing of pre-and postsynaptic spikes and also on the temporal pattern of presynaptic spikes and of postsynaptic spikes. We study the hypothesis that cortical synaptic plasticitydoes not associate individual spikes, but rather whole firing episodes,and depends only on when these episodes start and how long they last, but as little as possible on the timing of individual spikes. Here we present the mathematical background for such a study. Standard methodsfrom hidden Markov models are used to define what "firing episodes" are. Estimating the probability of being in such an episode requires not only the knowledge of past spikes, but also of future spikes. We show how to construct a causal learning rule, which depends only on past spikes, but associates pre-and postsynaptic firing episodes as if it also knew future spikes. We also show that this learning rule agrees with some features of synaptic plasticity in superficial layers of rat visual cortex (Froemke and Dan, Nature 416:433, 2002).
Analysis of Linsker's Simulations of Hebbian Rules
MacKay, David J. C., Miller, Kenneth D.
Linsker has reported the development of centre---surround receptive fields and oriented receptive fields in simulations of a Hebb-type equation in a linear network. The dynamics of the learning rule are analysed in terms of the eigenvectors of the covariance matrix of cell activities. Analytic and computational results for Linsker's covariance matrices, and some general theorems, lead to an explanation ofthe emergence of centre---surround and certain oriented structures. Linsker [Linsker, 1986, Linsker, 1988] has studied by simulation the evolution of weight vectors under a Hebb-type teacherless learning rule in a feed-forward linear network. The equation for the evolution of the weight vector w of a single neuron, derived by ensemble averaging the Hebbian rule over the statistics of the input patterns, is:!
Analysis of Linsker's Simulations of Hebbian Rules
MacKay, David J. C., Miller, Kenneth D.
Linsker has reported the development of centre---surround receptive fields and oriented receptive fields in simulations of a Hebb-type equation in a linear network. The dynamics of the learning rule are analysed in terms of the eigenvectors of the covariance matrix of cell activities. Analytic and computational results for Linsker's covariance matrices, and some general theorems, lead to an explanation of the emergence of centre---surround and certain oriented structures. Linsker [Linsker, 1986, Linsker, 1988] has studied by simulation the evolution of weight vectors under a Hebb-type teacherless learning rule in a feed-forward linear network. The equation for the evolution of the weight vector w of a single neuron, derived by ensemble averaging the Hebbian rule over the statistics of the input patterns, is:!
Models of Ocular Dominance Column Formation: Analytical and Computational Results
Miller, Kenneth D., Keller, Joseph B., Stryker, Michael P.
In the developing visual system in many mammalian species, there is initially a uniform, overlappinginnervation of layer 4 of the visual cortex by inputs representing the two eyes. Subsequently, these inputs segregate into patches or stripes that are largely or exclusively innervated by inputs serving a single eye, known as ocular dominance patches. The ocular dominance patches are on a small scale compared to the map of the visual world, so that the initially continuous map becomes two interdigitated maps, one representing each eye. These patches, together with the layers of cortex above and below layer 4, whose responses are dominated by the eye innervating the corresponding layer 4 patch, are known as ocular dominance columns.
Models of Ocular Dominance Column Formation: Analytical and Computational Results
Miller, Kenneth D., Keller, Joseph B., Stryker, Michael P.
In the developing visual system in many mammalian species, there is initially a uniform, overlapping innervation of layer 4 of the visual cortex by inputs representing the two eyes. Subsequently, these inputs segregate into patches or stripes that are largely or exclusively innervated by inputs serving a single eye, known as ocular dominance patches. The ocular dominance patches are on a small scale compared to the map of the visual world, so that the initially continuous map becomes two interdigitated maps, one representing each eye. These patches, together with the layers of cortex above and below layer 4, whose responses are dominated by the eye innervating the corresponding layer 4 patch, are known as ocular dominance columns.