Goto

Collaborating Authors

 Miller, John W.


Probability Estimation from a Database Using a Gibbs Energy Model

Neural Information Processing Systems

We present an algorithm for creating a neural network which produces accurate probability estimates as outputs. The network implements a Gibbs probability distribution model of the training database. This model is created by a new transformation relating the joint probabilities of attributes in the database to the weights (Gibbs potentials) of the distributed network model. The theory of this transformation is presented together with experimental results. One advantage of this approach is the network weights are prescribed without iterative gradient descent. Used as a classifier the network tied or outperformed published results on a variety of databases.


Probability Estimation from a Database Using a Gibbs Energy Model

Neural Information Processing Systems

We present an algorithm for creating a neural network which produces accurateprobability estimates as outputs. The network implements aGibbs probability distribution model of the training database. This model is created by a new transformation relating the joint probabilities of attributes in the database to the weights (Gibbs potentials) of the distributed network model. The theory of this transformation is presented together with experimental results. Oneadvantage of this approach is the network weights are prescribed without iterative gradient descent. Used as a classifier the network tied or outperformed published results on a variety of databases.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner, using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner,using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner, using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.