Mikolajczyk, Krystian
Closed Loop Interactive Embodied Reasoning for Robot Manipulation
Nazarczuk, Michal, Behrens, Jan Kristof, Stepanova, Karla, Hoffmann, Matej, Mikolajczyk, Krystian
Embodied reasoning systems integrate robotic hardware and cognitive processes to perform complex tasks typically in response to a natural language query about a specific physical environment. This usually involves changing the belief about the scene or physically interacting and changing the scene (e.g. 'Sort the objects from lightest to heaviest'). In order to facilitate the development of such systems we introduce a new simulating environment that makes use of MuJoCo physics engine and high-quality renderer Blender to provide realistic visual observations that are also accurate to the physical state of the scene. Together with the simulator we propose a new benchmark composed of 10 classes of multi-step reasoning scenarios that require simultaneous visual and physical measurements. Finally, we develop a new modular Closed Loop Interactive Reasoning (CLIER) approach that takes into account the measurements of non-visual object properties, changes in the scene caused by external disturbances as well as uncertain outcomes of robotic actions. We extensively evaluate our reasoning approach in simulation and in the real world manipulation tasks with a success rate above 76% and 64%, respectively.
Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
Kruzliak, Andrej, Hartvich, Jiri, Patni, Shubhan P., Rustler, Lukas, Behrens, Jan Kristof, Abu-Dakka, Fares J., Mikolajczyk, Krystian, Kyrki, Ville, Hoffmann, Matej
This work presents a framework for automatically extracting physical object properties, such as material composition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The framework involves exploratory action selection to maximize learning about objects on a table. A Bayesian network models conditional dependencies between object properties, incorporating prior probability distributions and uncertainty associated with measurement actions. The algorithm selects optimal exploratory actions based on expected information gain and updates object properties through Bayesian inference. Experimental evaluation demonstrates effective action selection compared to a baseline and correct termination of the experiments if there is nothing more to be learned. The algorithm proved to behave intelligently when presented with trick objects with material properties in conflict with their appearance. The robot pipeline integrates with a logging module and an online database of objects, containing over 24,000 measurements of 63 objects with different grippers. All code and data are publicly available, facilitating automatic digitization of objects and their physical properties through exploratory manipulations.
Language-Based Depth Hints for Monocular Depth Estimation
Auty, Dylan, Mikolajczyk, Krystian
Monocular depth estimation (MDE) is inherently ambiguous, as a given image may result from many different 3D scenes and vice versa. To resolve this ambiguity, an MDE system must make assumptions about the most likely 3D scenes for a given input. These assumptions can be either explicit or implicit. In this work, we demonstrate the use of natural language as a source of an explicit prior about the structure of the world. The assumption is made that human language encodes the likely distribution in depth-space of various objects. We first show that a language model encodes this implicit bias during training, and that it can be extracted using a very simple learned approach. We then show that this prediction can be provided as an explicit source of assumption to an MDE system, using an off-the-shelf instance segmentation model that provides the labels used as the input to the language model. We demonstrate the performance of our method on the NYUD2 dataset, showing improvement compared to the baseline and to random controls.
Learning to Project for Cross-Task Knowledge Distillation
Auty, Dylan, Miles, Roy, Kolbeinsson, Benedikt, Mikolajczyk, Krystian
Traditional knowledge distillation (KD) relies on a proficient teacher trained on the target task, which is not always available. In this setting, cross-task distillation can be used, enabling the use of any teacher model trained on a different task. However, many KD methods prove ineffective when applied to this cross-task setting. To address this limitation, we propose a simple modification: the use of an inverted projection. We show that this drop-in replacement for a standard projector is effective by learning to disregard any task-specific features which might degrade the student's performance. We find that this simple modification is sufficient for extending many KD methods to the cross-task setting, where the teacher and student tasks can be very different. In doing so, we obtain up to a 1.9% improvement in the cross-task setting compared to the traditional projection, at no additional cost. Our method can obtain significant performance improvements (up to 7%) when using even a randomly-initialised teacher on various tasks such as depth estimation, image translation, and semantic segmentation, despite the lack of any learned knowledge to transfer. To provide conceptual and analytical insights into this result, we show that using an inverted projection allows the distillation loss to be decomposed into a knowledge transfer and a spectral regularisation component. Through this analysis we are additionally able to propose a novel regularisation loss that allows teacher-free distillation, enabling performance improvements of up to 8.57% on ImageNet with no additional training costs.
Understanding the Role of the Projector in Knowledge Distillation
Miles, Roy, Mikolajczyk, Krystian
In this paper we revisit the efficacy of knowledge distillation as a function matching and metric learning problem. In doing so we verify three important design decisions, namely the normalisation, soft maximum function, and projection layers as key ingredients. We theoretically show that the projector implicitly encodes information on past examples, enabling relational gradients for the student. We then show that the normalisation of representations is tightly coupled with the training dynamics of this projector, which can have a large impact on the students performance. Finally, we show that a simple soft maximum function can be used to address any significant capacity gap problems. Experimental results on various benchmark datasets demonstrate that using these insights can lead to superior or comparable performance to state-of-the-art knowledge distillation techniques, despite being much more computationally efficient. In particular, we obtain these results across image classification (CIFAR100 and ImageNet), object detection (COCO2017), and on more difficult distillation objectives, such as training data efficient transformers, whereby we attain a 77.2% top-1 accuracy with DeiT-Ti on ImageNet. Code and models are publicly available.
Adaptive Early Exiting for Collaborative Inference over Noisy Wireless Channels
Jankowski, Mikolaj, Gunduz, Deniz, Mikolajczyk, Krystian
Collaborative inference systems are one of the emerging solutions for deploying deep neural networks (DNNs) at the wireless network edge. Their main idea is to divide a DNN into two parts, where the first is shallow enough to be reliably executed at edge devices of limited computational power, while the second part is executed at an edge server with higher computational capabilities. The main advantage of such systems is that the input of the DNN gets compressed as the subsequent layers of the shallow part extract only the information necessary for the task. As a result, significant communication savings can be achieved compared to transmitting raw input samples. In this work, we study early exiting in the context of collaborative inference, which allows obtaining inference results at the edge device for certain samples, without the need to transmit the partially processed data to the edge server at all, leading to further communication savings. The central part of our system is the transmission-decision (TD) mechanism, which, given the information from the early exit, and the wireless channel conditions, decides whether to keep the early exit prediction or transmit the data to the edge server for further processing. In this paper, we evaluate various TD mechanisms and show experimentally, that for an image classification task over the wireless edge, proper utilization of early exits can provide both performance gains and significant communication savings.
AirNet: Neural Network Transmission over the Air
Jankowski, Mikolaj, Gunduz, Deniz, Mikolajczyk, Krystian
State-of-the-art performance for many edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location-and time-sensitive, and must be delivered over a wireless channel rapidly and efficiently. In this paper, we introduce AirNet, a family of novel training and transmission methods that allow DNNs to be efficiently delivered over wireless channels under stringent transmit power and latency constraints. This corresponds to a new class of joint source-channel coding problems, aimed at delivering DNNs with the goal of maximizing their accuracy at the receiver, rather than recovering them with high fidelity. In AirNet, we propose the direct mapping of the DNN parameters to transmitted channel symbols, while the network is trained to meet the channel constraints, and exhibit robustness against channel noise. AirNet achieves higher accuracy compared to separation-based alternatives. We further improve the performance of AirNet by pruning the network below the available bandwidth, and expanding it for improved robustness. We also benefit from unequal error protection by selectively expanding important layers of the network. Finally, we develop an approach, which simultaneously trains a spectrum of DNNs, each targeting a different channel condition, resolving the impractical memory requirements of training distinct networks for different channel conditions. The results in this paper were presented in part at the 2022 IEEE International Symposium on Information Theory (ISIT) [1]. Developments within the area of DL have been made possible mainly thanks to the rapid growth of the computational power and memory available for both the researchers and the potential users of various DL-based algorithms. This resulted in the development of increasingly complex deep neural networks (DNNs) with millions and even billions of parameters trained on massive datasets, achieving impressive accuracy and performance in a wide variety of applications. On the other hand, the memory required to store a single modern DNN model can easily go from a few megabytes up to hundreds of gigabytes.
ObjCAViT: Improving Monocular Depth Estimation Using Natural Language Models And Image-Object Cross-Attention
Auty, Dylan, Mikolajczyk, Krystian
While monocular depth estimation (MDE) is an important problem in computer vision, it is difficult due to the ambiguity that results from the compression of a 3D scene into only 2 dimensions. It is common practice in the field to treat it as simple image-to-image translation, without consideration for the semantics of the scene and the objects within it. In contrast, humans and animals have been shown to use higher-level information to solve MDE: prior knowledge of the nature of the objects in the scene, their positions and likely configurations relative to one another, and their apparent sizes have all been shown to help resolve this ambiguity. In this paper, we present a novel method to enhance MDE performance by encouraging use of known-useful information about the semantics of objects and inter-object relationships within a scene. Our novel ObjCAViT module sources world-knowledge from language models and learns inter-object relationships in the context of the MDE problem using transformer attention, incorporating apparent size information. Our method produces highly accurate depth maps, and we obtain competitive results on the NYUv2 and KITTI datasets. Our ablation experiments show that the use of language and cross-attention within the ObjCAViT module increases performance. Code is released at https://github.com/DylanAuty/ObjCAViT.