Mikhail Yurochkin
Multi-way Interacting Regression via Factorization Machines
Mikhail Yurochkin, XuanLong Nguyen, nikolaos Vasiloglou
We propose a Bayesian regression method that accounts for multi-way interactions of arbitrary orders among the predictor variables. Our model makes use of a factorization mechanism for representing the regression coefficients of interactions among the predictors, while the interaction selection is guided by a prior distribution on random hypergraphs, a construction which generalizes the Finite Feature Model. We present a posterior inference algorithm based on Gibbs sampling, and establish posterior consistency of our regression model. Our method is evaluated with extensive experiments on simulated data and demonstrated to be able to identify meaningful interactions in applications in genetics and retail demand forecasting.
Conic Scan-and-Cover algorithms for nonparametric topic modeling
Mikhail Yurochkin, Aritra Guha, XuanLong Nguyen
We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of vertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques.