Goto

Collaborating Authors

 Mika, Maksymilian


Split Moves for Monte-Carlo Tree Search

arXiv.org Artificial Intelligence

In many games, moves consist of several decisions made by the player. These decisions can be viewed as separate moves, which is already a common practice in multi-action games for efficiency reasons. Such division of a player move into a sequence of simpler / lower level moves is called \emph{splitting}. So far, split moves have been applied only in forementioned straightforward cases, and furthermore, there was almost no study revealing its impact on agents' playing strength. Taking the knowledge-free perspective, we aim to answer how to effectively use split moves within Monte-Carlo Tree Search (MCTS) and what is the practical impact of split design on agents' strength. This paper proposes a generalization of MCTS that works with arbitrarily split moves. We design several variations of the algorithm and try to measure the impact of split moves separately on efficiency, quality of MCTS, simulations, and action-based heuristics. The tests are carried out on a set of board games and performed using the Regular Boardgames General Game Playing formalism, where split strategies of different granularity can be automatically derived based on an abstract description of the game. The results give an overview of the behavior of agents using split design in different ways. We conclude that split design can be greatly beneficial for single- as well as multi-action games.


Efficient Reasoning in Regular Boardgames

arXiv.org Artificial Intelligence

We present the technical side of reasoning in Regular Boardgames (RBG) language -- a universal General Game Playing (GGP) formalism for the class of finite deterministic games with perfect information, encoding rules in the form of regular expressions. RBG serves as a research tool that aims to aid in the development of generalized algorithms for knowledge inference, analysis, generation, learning, and playing games. In all these tasks, both generality and efficiency are important. In the first part, this paper describes optimizations used by the RBG compiler. The impact of these optimizations ranges from 1.7 to even 33-fold efficiency improvement when measuring the number of possible game playouts per second. Then, we perform an in-depth efficiency comparison with three other modern GGP systems (GDL, Ludii, Ai Ai). We also include our own highly optimized game-specific reasoners to provide a point of reference of the maximum speed. Our experiments show that RBG is currently the fastest among the abstract general game playing languages, and its efficiency can be competitive to common interface-based systems that rely on handcrafted game-specific implementations. Finally, we discuss some issues and methodology of computing benchmarks like this.


A note on the empirical comparison of RBG and Ludii

arXiv.org Artificial Intelligence

We present an experimental comparison of the efficiency of three General Game Playing systems in their current versions: Regular Boardgames (RBG 1.0), Ludii~0.3.0, and a Game Description Language (GDL) propnet. We show that in general, RBG is currently the fastest GGP system. For example, for chess, we demonstrate that RBG is about 37 times faster than Ludii, and Ludii is about 3 times slower than a GDL propnet. Referring to the recent comparison [An Empirical Evaluation of Two General Game Systems: Ludii and RBG, CoG 2019], we show evidences that the benchmark presented there contains a number of significant flaws that lead to wrong conclusions.


Regular Boardgames

arXiv.org Artificial Intelligence

We propose a new General Game Playing (GGP) language called Regular Boardgames (RBG), which is based on the theory of regular languages. The objective of RBG is to join key properties as expressiveness, efficiency, and naturalness of the description in one GGP formalism, compensating certain drawbacks of the existing languages. This often makes RBG more suitable for various research and practical developments in GGP. While dedicated mostly for describing board games, RBG is universal for the class of all finite deterministic turn-based games with perfect information. We establish foundations of RBG, and analyze it theoretically and experimentally, focusing on the efficiency of reasoning. Regular Boardgames is the first GGP language that allows efficient encoding and playing games with complex rules and with large branching factor (e.g.\ amazons, arimaa, large chess variants, go, international checkers, paper soccer).