Mihalkova, Lilyana
Structure Selection from Streaming Relational Data
Mihalkova, Lilyana, Moustafa, Walaa Eldin
Statistical relational learning techniques have been successfully applied in a wide range of relational domains. In most of these applications, the human designers capitalized on their background knowledge by following a trial-and-error trajectory, where relational features are manually defined by a human engineer, parameters are learned for those features on the training data, the resulting model is validated, and the cycle repeats as the engineer adjusts the set of features. This paper seeks to streamline application development in large relational domains by introducing a light-weight approach that efficiently evaluates relational features on pieces of the relational graph that are streamed to it one at a time. We evaluate our approach on two social media tasks and demonstrate that it leads to more accurate models that are learned faster.
Lifted Graphical Models: A Survey
Mihalkova, Lilyana, Getoor, Lise
This article presents a survey of work on lifted graphical models. We review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries. We also review work in learning lifted graphical models from data. It is our belief that the need for statistical relational models (whether it goes by that name or another) will grow in the coming decades, as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field.
Reports of the AAAI 2010 Conference Workshops
Aha, David W. (Naval Research Laboratory) | Boddy, Mark (Adventium Labs) | Bulitko, Vadim (University of Alberta) | Garcez, Artur S. d'Avila (City University London) | Doshi, Prashant (University of Georgia) | Edelkamp, Stefan (TZI, Bremen University) | Geib, Christopher (University of Edinburgh) | Gmytrasiewicz, Piotr (University of Illinois, Chicago) | Goldman, Robert P. (Smart Information Flow Technologies) | Hitzler, Pascal (Wright State University) | Isbell, Charles (Georgia Institute of Technology) | Josyula, Darsana (University of Maryland, College Park) | Kaelbling, Leslie Pack (Massachusetts Institute of Technology) | Kersting, Kristian (University of Bonn) | Kunda, Maithilee (Georgia Institute of Technology) | Lamb, Luis C. (Universidade Federal do Rio Grande do Sul (UFRGS)) | Marthi, Bhaskara (Willow Garage) | McGreggor, Keith (Georgia Institute of Technology) | Nastase, Vivi (EML Research gGmbH) | Provan, Gregory (University College Cork) | Raja, Anita (University of North Carolina, Charlotte) | Ram, Ashwin (Georgia Institute of Technology) | Riedl, Mark (Georgia Institute of Technology) | Russell, Stuart (University of California, Berkeley) | Sabharwal, Ashish (Cornell University) | Smaus, Jan-Georg (University of Freiburg) | Sukthankar, Gita (University of Central Florida) | Tuyls, Karl (Maastricht University) | Meyden, Ron van der (University of New South Wales) | Halevy, Alon (Google, Inc.) | Mihalkova, Lilyana (University of Maryland) | Natarajan, Sriraam (University of Wisconsin)
The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.
Reports of the AAAI 2010 Conference Workshops
Aha, David W. (Naval Research Laboratory) | Boddy, Mark (Adventium Labs) | Bulitko, Vadim (University of Alberta) | Garcez, Artur S. d' (City University London) | Avila (University of Georgia) | Doshi, Prashant (TZI, Bremen University) | Edelkamp, Stefan (University of Edinburgh) | Geib, Christopher (University of Illinois, Chicago) | Gmytrasiewicz, Piotr (Smart Information Flow Technologies) | Goldman, Robert P. (Wright State University) | Hitzler, Pascal (Georgia Institute of Technology) | Isbell, Charles (University of Maryland, College Park) | Josyula, Darsana (Massachusetts Institute of Technology) | Kaelbling, Leslie Pack (University of Bonn) | Kersting, Kristian (Georgia Institute of Technology) | Kunda, Maithilee (Universidade Federal do Rio Grande do Sul (UFRGS)) | Lamb, Luis C. (Willow Garage) | Marthi, Bhaskara (Georgia Institute of Technology) | McGreggor, Keith (EML Research gGmbH) | Nastase, Vivi (University College Cork) | Provan, Gregory (University of North Carolina, Charlotte) | Raja, Anita (Georgia Institute of Technology) | Ram, Ashwin (Georgia Institute of Technology) | Riedl, Mark (University of California, Berkeley) | Russell, Stuart (Cornell University) | Sabharwal, Ashish (University of Freiburg) | Smaus, Jan-Georg (University of Central Florida) | Sukthankar, Gita (Maastricht University) | Tuyls, Karl (University of New South Wales) | Meyden, Ron van der (Google, Inc.) | Halevy, Alon (University of Maryland) | Mihalkova, Lilyana (University of Wisconsin) | Natarajan, Sriraam
The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.
Preface
Kersting, Kristian (Fraunhofer IAIS and University of Bonn) | Russell, Stuart (University of California, Berkeley) | Kaelbling, Leslie Pack (Massachusetts Institute of Technology) | Halevy, Alon (University of Wisconsin Madison) | Natarajan, Sriraam (University of Texas at Austin) | Mihalkova, Lilyana
Much has been achieved in the field of AI, yet much remains Gibbs sampling code in C/C . Chechetka et al. investigate relational learning for collective classification of entities to be done if we are to reach the goals we all imagine. in images. Choi et al. present a lifted inference One of the key challenges with moving ahead is closing approach for relational continuous models. Logical AI has Gogate and Domingos shows how to exploit logical structure mainly focused on complex representations, and statistical in lifted probabilistic inference. Hadiji et al. discuss AI on uncertainty.