Goto

Collaborating Authors

 Mihalcea, Rada


EmoBench: Evaluating the Emotional Intelligence of Large Language Models

arXiv.org Artificial Intelligence

Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion regulation and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data are publicly available at https://github.com/Sahandfer/EmoBench.


Tables as Texts or Images: Evaluating the Table Reasoning Ability of LLMs and MLLMs

arXiv.org Artificial Intelligence

Specifically, we investigate Recent years have witnessed an explosion of Large several research questions, including the effectiveness Language Models (LLMs), with impressive performance of image-based representation of tabular on various Natural Language Processing data and how different text-based or imagebased (NLP) tasks (Brown et al., 2020; Touvron et al., prompt methods affect LLMs' performance 2023; Team et al., 2023). Research to date has on table-related tasks. In addition, we provide analysis examined the performance of LLMs for various and hypothesis of LLMs' behaviors. Our findings aspects and abilities (Bang et al., 2023b; Bubeck include: et al., 2023; Akter et al., 2023), but their effectiveness on structured data such as tables is less explored. LLMs maintain decent performance when we Unlike unstructured text, tables are systematically use image-based table representations. Sometimes, organized structures of a large amount of image-based table representations can information. This characteristic makes tabular make LLMs perform better.


CausalQuest: Collecting Natural Causal Questions for AI Agents

arXiv.org Machine Learning

Humans have an innate drive to seek out causality. Whether fuelled by curiosity or specific goals, we constantly question why things happen, how they are interconnected, and many other related phenomena. To develop AI agents capable of addressing this natural human quest for causality, we urgently need a comprehensive dataset of natural causal questions. Unfortunately, existing datasets either contain only artificially-crafted questions that do not reflect real AI usage scenarios or have limited coverage of questions from specific sources. To address this gap, we present CausalQuest, a dataset of 13,500 naturally occurring questions sourced from social networks, search engines, and AI assistants. We formalize the definition of causal questions and establish a taxonomy for finer-grained classification. Through a combined effort of human annotators and large language models (LLMs), we carefully label the dataset. We find that 42% of the questions humans ask are indeed causal, with the majority seeking to understand the causes behind given effects. Using this dataset, we train efficient classifiers (up to 2.85B parameters) for the binary task of identifying causal questions, achieving high performance with F1 scores of up to 0.877. We conclude with a rich set of future research directions that can build upon our data and models.


Implicit Personalization in Language Models: A Systematic Study

arXiv.org Artificial Intelligence

Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.


The Generation Gap:Exploring Age Bias in the Underlying Value Systems of Large Language Models

arXiv.org Artificial Intelligence

In this paper, we explore the alignment of values in Large Language Models (LLMs) with specific age groups, leveraging data from the World Value Survey across thirteen categories. Through a diverse set of prompts tailored to ensure response robustness, we find a general inclination of LLM values towards younger demographics, especially in the US. Additionally, we explore the impact of incorporating age identity information in prompts and observe challenges in mitigating value discrepancies with different age cohorts. Our findings highlight the age bias in LLMs and provide insights for future work. Materials for our analysis will be available via anonymous.github


Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated substantial commonsense understanding through numerous benchmark evaluations. However, their understanding of cultural commonsense remains largely unexamined. In this paper, we conduct a comprehensive examination of the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks. Using several general and cultural commonsense benchmarks, we find that (1) LLMs have a significant discrepancy in performance when tested on culture-specific commonsense knowledge for different cultures; (2) LLMs' general commonsense capability is affected by cultural context; and (3) The language used to query the LLMs can impact their performance on cultural-related tasks. Our study points to the inherent bias in the cultural understanding of LLMs and provides insights that can help develop culturally aware language models.


Towards Dog Bark Decoding: Leveraging Human Speech Processing for Automated Bark Classification

arXiv.org Artificial Intelligence

Similar to humans, animals make extensive use of verbal and non-verbal forms of communication, including a large range of audio signals. In this paper, we address dog vocalizations and explore the use of self-supervised speech representation models pre-trained on human speech to address dog bark classification tasks that find parallels in human-centered tasks in speech recognition. We specifically address four tasks: dog recognition, breed identification, gender classification, and context grounding. We show that using speech embedding representations significantly improves over simpler classification baselines. Further, we also find that models pre-trained on large human speech acoustics can provide additional performance boosts on several tasks.


On the Causal Nature of Sentiment Analysis

arXiv.org Artificial Intelligence

Sentiment analysis (SA) aims to identify the sentiment expressed in a text, such as a product review. Given a review and the sentiment associated with it, this paper formulates SA as a combination of two tasks: (1) a causal discovery task that distinguishes whether a review "primes" the sentiment (Causal Hypothesis C1), or the sentiment "primes" the review (Causal Hypothesis C2); and (2) the traditional prediction task to model the sentiment using the review as input. Using the peak-end rule in psychology, we classify a sample as C1 if its overall sentiment score approximates an average of all the sentence-level sentiments in the review, and C2 if the overall sentiment score approximates an average of the peak and end sentiments. For the prediction task, we use the discovered causal mechanisms behind the samples to improve the performance of LLMs by proposing causal prompts that give the models an inductive bias of the underlying causal graph, leading to substantial improvements by up to 32.13 F1 points on zero-shot five-class SA. Our code is at https://github.com/cogito233/causal-sa


Towards Algorithmic Fidelity: Mental Health Representation across Demographics in Synthetic vs. Human-generated Data

arXiv.org Artificial Intelligence

Synthetic data generation has the potential to impact applications and domains with scarce data. However, before such data is used for sensitive tasks such as mental health, we need an understanding of how different demographics are represented in it. In our paper, we analyze the potential of producing synthetic data using GPT-3 by exploring the various stressors it attributes to different race and gender combinations, to provide insight for future researchers looking into using LLMs for data generation. Using GPT-3, we develop HEADROOM, a synthetic dataset of 3,120 posts about depression-triggering stressors, by controlling for race, gender, and time frame (before and after COVID-19). Using this dataset, we conduct semantic and lexical analyses to (1) identify the predominant stressors for each demographic group; and (2) compare our synthetic data to a human-generated dataset. We present the procedures to generate queries to develop depression data using GPT-3, and conduct analyzes to uncover the types of stressors it assigns to demographic groups, which could be used to test the limitations of LLMs for synthetic data generation for depression data. Our findings show that synthetic data mimics some of the human-generated data distribution for the predominant depression stressors across diverse demographics.


Dynamic Reward Adjustment in Multi-Reward Reinforcement Learning for Counselor Reflection Generation

arXiv.org Artificial Intelligence

In this paper, we study the problem of multi-reward reinforcement learning to jointly optimize for multiple text qualities for natural language generation. We focus on the task of counselor reflection generation, where we optimize the generators to simultaneously improve the fluency, coherence, and reflection quality of generated counselor responses. We introduce two novel bandit methods, DynaOpt and C-DynaOpt, which rely on the broad strategy of combining rewards into a single value and optimizing them simultaneously. Specifically, we employ non-contextual and contextual multi-arm bandits to dynamically adjust multiple reward weights during training. Through automatic and manual evaluations, we show that our proposed techniques, DynaOpt and C-DynaOpt, outperform existing naive and bandit baselines, demonstrating their potential for enhancing language models.