Goto

Collaborating Authors

 Mieleszczenko-Kowszewicz, Wiktoria


Mind What You Ask For: Emotional and Rational Faces of Persuasion by Large Language Models

arXiv.org Artificial Intelligence

Be careful what you ask for, you just might get it. This saying fits with the way large language models (LLMs) are trained, which, instead of being rewarded for correctness, are increasingly rewarded for pleasing the recipient. So, they are increasingly effective at persuading us that their answers are valuable. But what tricks do they use in this persuasion? In this study, we examine what are the psycholinguistic features of the responses used by twelve different language models. By grouping response content according to rational or emotional prompts and exploring social influence principles employed by LLMs, we ask whether and how we can mitigate the risks of LLM-driven mass misinformation. We position this study within the broader discourse on human-centred AI, emphasizing the need for interdisciplinary approaches to mitigate cognitive and societal risks posed by persuasive AI responses.


The Dark Patterns of Personalized Persuasion in Large Language Models: Exposing Persuasive Linguistic Features for Big Five Personality Traits in LLMs Responses

arXiv.org Artificial Intelligence

This study explores how the Large Language Models (LLMs) adjust linguistic features to create personalized persuasive outputs. While research showed that LLMs personalize outputs, a gap remains in understanding the linguistic features of their persuasive capabilities. We identified 13 linguistic features crucial for influencing personalities across different levels of the Big Five model of personality. We analyzed how prompts with personality trait information influenced the output of 19 LLMs across five model families. The findings show that models use more anxiety-related words for neuroticism, increase achievement-related words for conscientiousness, and employ fewer cognitive processes words for openness to experience. Some model families excel at adapting language for openness to experience, others for conscientiousness, while only one model adapts language for neuroticism. Our findings show how LLMs tailor responses based on personality cues in prompts, indicating their potential to create persuasive content affecting the mind and well-being of the recipients.


ChatGPT: Jack of all trades, master of none

arXiv.org Artificial Intelligence

OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT) and revolutionized the approach in artificial intelligence to human-model interaction. Several publications on ChatGPT evaluation test its effectiveness on well-known natural language processing (NLP) tasks. However, the existing studies are mostly non-automated and tested on a very limited scale. In this work, we examined ChatGPT's capabilities on 25 diverse analytical NLP tasks, most of them subjective even to humans, such as sentiment analysis, emotion recognition, offensiveness, and stance detection. In contrast, the other tasks require more objective reasoning like word sense disambiguation, linguistic acceptability, and question answering. We also evaluated GPT-4 model on five selected subsets of NLP tasks. We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses. Our comparison of its results with available State-of-the-Art (SOTA) solutions showed that the average loss in quality of the ChatGPT model was about 25% for zero-shot and few-shot evaluation. For GPT-4 model, a loss for semantic tasks is significantly lower than for ChatGPT. We showed that the more difficult the task (lower SOTA performance), the higher the ChatGPT loss. It especially refers to pragmatic NLP problems like emotion recognition. We also tested the ability to personalize ChatGPT responses for selected subjective tasks via Random Contextual Few-Shot Personalization, and we obtained significantly better user-based predictions. Additional qualitative analysis revealed a ChatGPT bias, most likely due to the rules imposed on human trainers by OpenAI. Our results provide the basis for a fundamental discussion of whether the high quality of recent predictive NLP models can indicate a tool's usefulness to society and how the learning and validation procedures for such systems should be established.