Goto

Collaborating Authors

 Michalak, Tomasz


Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are recognized as potent tools for processing real-world data organized in graph structures. Especially inductive GNNs, which enable the processing of graph-structured data without relying on predefined graph structures, are gaining importance in an increasingly wide variety of applications. As these networks demonstrate proficiency across a range of tasks, they become lucrative targets for model-stealing attacks where an adversary seeks to replicate the functionality of the targeted network. A large effort has been made to develop model-stealing attacks that focus on models trained with images and texts. However, little attention has been paid to GNNs trained on graph data. This paper introduces a novel method for unsupervised model-stealing attacks against inductive GNNs, based on graph contrasting learning and spectral graph augmentations to efficiently extract information from the target model. The proposed attack is thoroughly evaluated on six datasets. The results show that this approach demonstrates a higher level of efficiency compared to existing stealing attacks. More concretely, our attack outperforms the baseline on all benchmarks achieving higher fidelity and downstream accuracy of the stolen model while requiring fewer queries sent to the target model.


Multiagent Model-based Credit Assignment for Continuous Control

arXiv.org Artificial Intelligence

Deep reinforcement learning (RL) has recently shown great promise in robotic continuous control tasks. Nevertheless, prior research in this vein center around the centralized learning setting that largely relies on the communication availability among all the components of a robot. However, agents in the real world often operate in a decentralised fashion without communication due to latency requirements, limited power budgets and safety concerns. By formulating robotic components as a system of decentralised agents, this work presents a decentralised multiagent reinforcement learning framework for continuous control. To this end, we first develop a cooperative multiagent PPO framework that allows for centralized optimisation during training and decentralised operation during execution. However, the system only receives a global reward signal which is not attributed towards each agent. To address this challenge, we further propose a generic game-theoretic credit assignment framework which computes agent-specific reward signals. Last but not least, we also incorporate a model-based RL module into our credit assignment framework, which leads to significant improvement in sample efficiency. We demonstrate the effectiveness of our framework on experimental results on Mujoco locomotion control tasks. For a demo video please visit: https://youtu.be/gFyVPm4svEY.


Using the Shapley Value to Analyze Algorithm Portfolios

AAAI Conferences

Algorithms for NP-complete problems often have different strengths andweaknesses, and thus algorithm portfolios often outperform individualalgorithms. It is surprisingly difficult to quantify a component algorithm's contributionto such a portfolio. Reporting a component's standalone performance wronglyrewards near-clones while penalizing algorithms that have small but distinctareas of strength. Measuring a component's marginal contribution to an existingportfolio is better, but penalizes sets of strongly correlated algorithms,thereby obscuring situations in which it is essential to have at least onealgorithm from such a set. This paper argues for analyzing component algorithmcontributions via a measure drawn from coalitional game theory---the Shapleyvalue---and yields insight into a research community's progress over time. Weconclude with an application of the analysis we advocate to SAT competitions,yielding novel insights into the behaviour of algorithm portfolios, theircomponents, and the state of SAT solving technology.


Coalitional Games via Network Flows

AAAI Conferences

We introduce a new representation scheme for coalitional games, called coalition-flow networks (CF-NETs), where the formation of effective coalitions in a task-based setting is reduced to the problem of directing flow through a network. We show that our representation is intuitive, fully expressive, and captures certain patterns in a significantly more concise manner compared to the conventional approach. Furthermore, our representation has the flexibility to express various classes of games, such as characteristic function games, coalitional games with overlapping coalitions, and coalitional games with agent types. As such, to the best of our knowledge, CF-NETs is the first representation that allows for switching conveniently and efficiently between overlapping/non-overlapping coalitions, with/without agent types. We demonstrate the efficiency of our scheme on the coalition structure generation problem, where near-optimal solutions for large instances can be found in a matter of seconds.


A Hybrid Algorithm for Coalition Structure Generation

AAAI Conferences

The current state-of-the-art algorithm for optimal coalition structure generation is IDP-IP — an algorithm that combines IDP (a dynamic programming algorithm due to Rahwan and Jennings, AAAI'08) with IP (a tree-search algorithm due to Rahwan et al., JAIR'09). In this paper we analyse IDP-IP, highlight its limitations, and then develop a new approach for combining IDP with IP that overcomes these limitations.