Michal Valko
Optimistic optimization of a Brownian
Jean-Bastien Grill, Michal Valko, Remi Munos
Multiagent Evaluation under Incomplete Information
Mark Rowland, Shayegan Omidshafiei, Karl Tuyls, Julien Perolat, Michal Valko, Georgios Piliouras, Remi Munos
This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with recent works also using methods based on Nash equilibria. Unfortunately, Elo is unable to handle intransitive agent interactions, and other techniques are restricted to zero-sum, two-player settings or are limited by the fact that the Nash equilibrium is intractable to compute. Recently, a ranking method called α-Rank, relying on a new graph-based game-theoretic solution concept, was shown to tractably apply to general games. However, evaluations based on Elo or α-Rank typically assume noise-free game outcomes, despite the data often being collected from noisy simulations, making this assumption unrealistic in practice. This paper investigates multiagent evaluation in the incomplete information regime, involving general-sum many-player games with noisy outcomes. We derive sample complexity guarantees required to confidently rank agents in this setting. We propose adaptive algorithms for accurate ranking, provide correctness and sample complexity guarantees, then introduce a means of connecting uncertainties in noisy match outcomes to uncertainties in rankings. We evaluate the performance of these approaches in several domains, including Bernoulli games, a soccer meta-game, and Kuhn poker.
On two ways to use determinantal point processes for Monte Carlo integration
Guillaume Gautier, Rémi Bardenet, Michal Valko
When approximating an integral by a weighted sum of function evaluations, determinantal point processes (DPPs) provide a way to enforce repulsion between the evaluation points. This negative dependence is encoded by a kernel. Fifteen years before the discovery of DPPs, Ermakov & Zolotukhin (EZ, 1960) had the intuition of sampling a DPP and solving a linear system to compute an unbiased Monte Carlo estimator of the integral. In the absence of DPP machinery to derive an efficient sampler and analyze their estimator, the idea of Monte Carlo integration with DPPs was stored in the cellar of numerical integration. Recently, Bardenet & Hardy (BH, 2019) came up with a more natural estimator with a fast central limit theorem (CLT). In this paper, we first take the EZ estimator out of the cellar, and analyze it using modern arguments.
Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning
Jean-Bastien Grill, Michal Valko, Remi Munos
You are a robot and you live in a Markov decision process (MDP) with a finite or an infinite number of transitions from state-action to next states. You got brains and so you plan before you act. Luckily, your roboparents equipped you with a generative model to do some Monte-Carlo planning. The world is waiting for you and you have no time to waste. You want your planning to be efficient.
Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback
Zheng Wen, Branislav Kveton, Michal Valko, Sharan Vaswani
We study the online influence maximization problem in social networks under the independent cascade model. Specifically, we aim to learn the set of "best influencers" in a social network online while repeatedly interacting with it. We address the challenges of (i) combinatorial action space, since the number of feasible influencer sets grows exponentially with the maximum number of influencers, and (ii) limited feedback, since only the influenced portion of the network is observed. Under a stochastic semi-bandit feedback, we propose and analyze IMLinUCB, a computationally efficient UCB-based algorithm. Our bounds on the cumulative regret are polynomial in all quantities of interest, achieve near-optimal dependence on the number of interactions and reflect the topology of the network and the activation probabilities of its edges, thereby giving insights on the problem complexity. To the best of our knowledge, these are the first such results. Our experiments show that in several representative graph topologies, the regret of IMLinUCB scales as suggested by our upper bounds. IMLinUCB permits linear generalization and thus is both statistically and computationally suitable for large-scale problems. Our experiments also show that IMLinUCB with linear generalization can lead to low regret in real-world online influence maximization.
Optimistic optimization of a Brownian
Jean-Bastien Grill, Michal Valko, Remi Munos
We address the problem of optimizing a Brownian motion. We consider a (random) realization W of a Brownian motion with input space in [0, 1]. Given W, our goal is to return an ε-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm.