Michael, null
GPT-4 Technical Report
OpenAI, null, :, null, Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya, Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Altman, Sam, Anadkat, Shyamal, Avila, Red, Babuschkin, Igor, Balaji, Suchir, Balcom, Valerie, Baltescu, Paul, Bao, Haiming, Bavarian, Mo, Belgum, Jeff, Bello, Irwan, Berdine, Jake, Bernadett-Shapiro, Gabriel, Berner, Christopher, Bogdonoff, Lenny, Boiko, Oleg, Boyd, Madelaine, Brakman, Anna-Luisa, Brockman, Greg, Brooks, Tim, Brundage, Miles, Button, Kevin, Cai, Trevor, Campbell, Rosie, Cann, Andrew, Carey, Brittany, Carlson, Chelsea, Carmichael, Rory, Chan, Brooke, Chang, Che, Chantzis, Fotis, Chen, Derek, Chen, Sully, Chen, Ruby, Chen, Jason, Chen, Mark, Chess, Ben, Cho, Chester, Chu, Casey, Chung, Hyung Won, Cummings, Dave, Currier, Jeremiah, Dai, Yunxing, Decareaux, Cory, Degry, Thomas, Deutsch, Noah, Deville, Damien, Dhar, Arka, Dohan, David, Dowling, Steve, Dunning, Sheila, Ecoffet, Adrien, Eleti, Atty, Eloundou, Tyna, Farhi, David, Fedus, Liam, Felix, Niko, Fishman, Simón Posada, Forte, Juston, Fulford, Isabella, Gao, Leo, Georges, Elie, Gibson, Christian, Goel, Vik, Gogineni, Tarun, Goh, Gabriel, Gontijo-Lopes, Rapha, Gordon, Jonathan, Grafstein, Morgan, Gray, Scott, Greene, Ryan, Gross, Joshua, Gu, Shixiang Shane, Guo, Yufei, Hallacy, Chris, Han, Jesse, Harris, Jeff, He, Yuchen, Heaton, Mike, Heidecke, Johannes, Hesse, Chris, Hickey, Alan, Hickey, Wade, Hoeschele, Peter, Houghton, Brandon, Hsu, Kenny, Hu, Shengli, Hu, Xin, Huizinga, Joost, Jain, Shantanu, Jain, Shawn, Jang, Joanne, Jiang, Angela, Jiang, Roger, Jin, Haozhun, Jin, Denny, Jomoto, Shino, Jonn, Billie, Jun, Heewoo, Kaftan, Tomer, Kaiser, Łukasz, Kamali, Ali, Kanitscheider, Ingmar, Keskar, Nitish Shirish, Khan, Tabarak, Kilpatrick, Logan, Kim, Jong Wook, Kim, Christina, Kim, Yongjik, Kirchner, Hendrik, Kiros, Jamie, Knight, Matt, Kokotajlo, Daniel, Kondraciuk, Łukasz, Kondrich, Andrew, Konstantinidis, Aris, Kosic, Kyle, Krueger, Gretchen, Kuo, Vishal, Lampe, Michael, Lan, Ikai, Lee, Teddy, Leike, Jan, Leung, Jade, Levy, Daniel, Li, Chak Ming, Lim, Rachel, Lin, Molly, Lin, Stephanie, Litwin, Mateusz, Lopez, Theresa, Lowe, Ryan, Lue, Patricia, Makanju, Anna, Malfacini, Kim, Manning, Sam, Markov, Todor, Markovski, Yaniv, Martin, Bianca, Mayer, Katie, Mayne, Andrew, McGrew, Bob, McKinney, Scott Mayer, McLeavey, Christine, McMillan, Paul, McNeil, Jake, Medina, David, Mehta, Aalok, Menick, Jacob, Metz, Luke, Mishchenko, Andrey, Mishkin, Pamela, Monaco, Vinnie, Morikawa, Evan, Mossing, Daniel, Mu, Tong, Murati, Mira, Murk, Oleg, Mély, David, Nair, Ashvin, Nakano, Reiichiro, Nayak, Rajeev, Neelakantan, Arvind, Ngo, Richard, Noh, Hyeonwoo, Ouyang, Long, O'Keefe, Cullen, Pachocki, Jakub, Paino, Alex, Palermo, Joe, Pantuliano, Ashley, Parascandolo, Giambattista, Parish, Joel, Parparita, Emy, Passos, Alex, Pavlov, Mikhail, Peng, Andrew, Perelman, Adam, Peres, Filipe de Avila Belbute, Petrov, Michael, Pinto, Henrique Ponde de Oliveira, Michael, null, Pokorny, null, Pokrass, Michelle, Pong, Vitchyr, Powell, Tolly, Power, Alethea, Power, Boris, Proehl, Elizabeth, Puri, Raul, Radford, Alec, Rae, Jack, Ramesh, Aditya, Raymond, Cameron, Real, Francis, Rimbach, Kendra, Ross, Carl, Rotsted, Bob, Roussez, Henri, Ryder, Nick, Saltarelli, Mario, Sanders, Ted, Santurkar, Shibani, Sastry, Girish, Schmidt, Heather, Schnurr, David, Schulman, John, Selsam, Daniel, Sheppard, Kyla, Sherbakov, Toki, Shieh, Jessica, Shoker, Sarah, Shyam, Pranav, Sidor, Szymon, Sigler, Eric, Simens, Maddie, Sitkin, Jordan, Slama, Katarina, Sohl, Ian, Sokolowsky, Benjamin, Song, Yang, Staudacher, Natalie, Such, Felipe Petroski, Summers, Natalie, Sutskever, Ilya, Tang, Jie, Tezak, Nikolas, Thompson, Madeleine, Tillet, Phil, Tootoonchian, Amin, Tseng, Elizabeth, Tuggle, Preston, Turley, Nick, Tworek, Jerry, Uribe, Juan Felipe Cerón, Vallone, Andrea, Vijayvergiya, Arun, Voss, Chelsea, Wainwright, Carroll, Wang, Justin Jay, Wang, Alvin, Wang, Ben, Ward, Jonathan, Wei, Jason, Weinmann, CJ, Welihinda, Akila, Welinder, Peter, Weng, Jiayi, Weng, Lilian, Wiethoff, Matt, Willner, Dave, Winter, Clemens, Wolrich, Samuel, Wong, Hannah, Workman, Lauren, Wu, Sherwin, Wu, Jeff, Wu, Michael, Xiao, Kai, Xu, Tao, Yoo, Sarah, Yu, Kevin, Yuan, Qiming, Zaremba, Wojciech, Zellers, Rowan, Zhang, Chong, Zhang, Marvin, Zhao, Shengjia, Zheng, Tianhao, Zhuang, Juntang, Zhuk, William, Zoph, Barret
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
Perceptive Locomotion with Controllable Pace and Natural Gait Transitions Over Uneven Terrains
Tan, Daniel Chee Hian, Zhang, Jenny, Michael, null, Chuah, null, Li, Zhibin
This work developed a learning framework for perceptive legged locomotion that combines visual feedback, proprioceptive information, and active gait regulation of foot-ground contacts. The perception requires only one forward-facing camera to obtain the heightmap, and the active regulation of gait paces and traveling velocity are realized through our formulation of CPG-based high-level imitation of foot-ground contacts. Through this framework, an end-user has the ability to command task-level inputs to control different walking speeds and gait frequencies according to the traversal of different terrains, which enables more reliable negotiation with encountered obstacles. The results demonstrated that the learned perceptive locomotion policy followed task-level control inputs with intended behaviors, and was robust in presence of unseen terrains and external force perturbations. A video demonstration can be found at https://youtu.be/OTzlWzDfAe8, and the codebase at https://github.com/jennyzzt/perceptual-locomotion.