Miao, Juzheng
FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks
Miao, Juzheng, Chen, Cheng, Zhang, Keli, Chuai, Jie, Li, Quanzheng, Heng, Pheng-Ann
One-shot detection of anatomical landmarks is gaining significant attention for its efficiency in using minimal labeled data to produce promising results. However, the success of current methods heavily relies on the employment of extensive unlabeled data to pre-train an effective feature extractor, which limits their applicability in scenarios where a substantial amount of unlabeled data is unavailable. In this paper, we propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images by utilizing solely a single template image without any additional unlabeled data. Specifically, we use the frozen image encoder of visual foundation models as the feature extractor, and introduce dual-branch global and local feature decoders to increase the resolution of extracted features in a coarse to fine manner. The introduced feature decoders are efficiently trained with a distance-aware similarity learning loss to incorporate domain knowledge from the single template image. Moreover, a novel bidirectional matching strategy is developed to improve both robustness and accuracy of landmark detection in the case of scattered similarity map obtained by foundation models. We validate our method on two public anatomical landmark detection datasets. By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning
Li, Qingming, Miao, Juzheng, Zhao, Puning, Zhou, Li, Ji, Shouling, Zhou, Bowen, Liu, Furui
Client selection significantly affects the system convergence efficiency and is a crucial problem in federated learning. Existing methods often select clients by evaluating each round individually and overlook the necessity for long-term optimization, resulting in suboptimal performance and potential fairness issues. In this study, we propose a novel client selection strategy designed to emulate the performance achieved with full client participation. In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set. In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected. This constraint guides the client selection process from a long-term perspective. We employ Lyapunov optimization and submodular functions to efficiently identify the optimal subset of clients, and provide a theoretical analysis of the convergence ability. Experiments demonstrate that the proposed strategy significantly improves both accuracy and fairness compared to previous methods while also exhibiting efficiency by incurring minimal time overhead.
Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark Detection in Medical Images
Zhou, Guang-Quan, Miao, Juzheng, Yang, Xin, Li, Rui, Huo, En-Ze, Shi, Wenlong, Huang, Yuhao, Qian, Jikuan, Chen, Chaoyu, Ni, Dong
Automatic and accurate detection of anatomical landmarks is an essential operation in medical image analysis with a multitude of applications. Recent deep learning methods have improved results by directly encoding the appearance of the captured anatomy with the likelihood maps (i.e., heatmaps). However, most current solutions overlook another essence of heatmap regression, the objective metric for regressing target heatmaps and rely on hand-crafted heuristics to set the target precision, thus being usually cumbersome and task-specific. In this paper, we propose a novel learning-to-learn framework for landmark detection to optimize the neural network and the target precision simultaneously. The pivot of this work is to leverage the reinforcement learning (RL) framework to search objective metrics for regressing multiple heatmaps dynamically during the training process, thus avoiding setting problem-specific target precision. We also introduce an early-stop strategy for active termination of the RL agent's interaction that adapts the optimal precision for separate targets considering exploration-exploitation tradeoffs. This approach shows better stability in training and improved localization accuracy in inference. Extensive experimental results on two different applications of landmark localization: 1) our in-house prenatal ultrasound (US) dataset and 2) the publicly available dataset of cephalometric X-Ray landmark detection, demonstrate the effectiveness of our proposed method. Our proposed framework is general and shows the potential to improve the efficiency of anatomical landmark detection.