Goto

Collaborating Authors

 Mi, Qirui


Learning Macroeconomic Policies based on Microfoundations: A Dynamic Stackelberg Mean Field Game Approach

arXiv.org Artificial Intelligence

The Lucas critique emphasizes the importance of considering the impact of policy changes on the expectations of micro-level agents in macroeconomic policymaking. However, the inherently self-interested nature of large-scale micro-agents, who pursue long-term benefits, complicates the formulation of optimal macroeconomic policies. This paper proposes a novel general framework named Dynamic Stackelberg Mean Field Games (Dynamic SMFG) to model such policymaking within sequential decision-making processes, with the government as the leader and households as dynamic followers. Dynamic SMFGs capture the dynamic interactions among large-scale households and their response to macroeconomic policy changes. To solve dynamic SMFGs, we propose the Stackelberg Mean Field Reinforcement Learning (SMFRL) algorithm, which leverages the population distribution of followers to represent high-dimensional joint state and action spaces. In experiments, our method surpasses macroeconomic policies in the real world, existing AI-based and economic methods. It allows the leader to approach the social optimum with the highest performance, while large-scale followers converge toward their best response to the leader's policy. Besides, we demonstrate that our approach retains effectiveness even when some households do not adopt the SMFG policy. In summary, this paper contributes to the field of AI for economics by offering an effective tool for modeling and solving macroeconomic policy-making issues.


Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach

arXiv.org Artificial Intelligence

StarCraft II is a challenging benchmark for AI agents due to the necessity of both precise micro level operations and strategic macro awareness. Previous works, such as Alphastar and SCC, achieve impressive performance on tackling StarCraft II , however, still exhibit deficiencies in long term strategic planning and strategy interpretability. Emerging large language model (LLM) agents, such as Voyage and MetaGPT, presents the immense potential in solving intricate tasks. Motivated by this, we aim to validate the capabilities of LLMs on StarCraft II, a highly complex RTS game.To conveniently take full advantage of LLMs` reasoning abilities, we first develop textual StratCraft II environment, called TextStarCraft II, which LLM agent can interact. Secondly, we propose a Chain of Summarization method, including single frame summarization for processing raw observations and multi frame summarization for analyzing game information, providing command recommendations, and generating strategic decisions. Our experiment consists of two parts: first, an evaluation by human experts, which includes assessing the LLMs`s mastery of StarCraft II knowledge and the performance of LLM agents in the game; second, the in game performance of LLM agents, encompassing aspects like win rate and the impact of Chain of Summarization.Experiment results demonstrate that: 1. LLMs possess the relevant knowledge and complex planning abilities needed to address StarCraft II scenarios; 2. Human experts consider the performance of LLM agents to be close to that of an average player who has played StarCraft II for eight years; 3. LLM agents are capable of defeating the built in AI at the Harder(Lv5) difficulty level. We have open sourced the code and released demo videos of LLM agent playing StarCraft II.