Goto

Collaborating Authors

 Mi, Fei


DAST: Difficulty-Aware Self-Training on Large Language Models

arXiv.org Artificial Intelligence

Present Large Language Models (LLM) self-training methods always under-sample on challenging queries, leading to inadequate learning on difficult problems which limits LLMs' ability. Therefore, this work proposes a difficulty-aware self-training (DAST) framework that focuses on improving both the quantity and quality of self-generated responses on challenging queries during self-training. DAST is specified in three components: 1) sampling-based difficulty level estimation, 2) difficulty-aware data augmentation, and 3) the self-training algorithm using SFT and DPO respectively. Experiments on mathematical tasks demonstrate the effectiveness and generalization of DAST, highlighting the critical role of difficulty-aware strategies in advancing LLM self-training.


UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models

arXiv.org Artificial Intelligence

Despite demonstrating impressive capabilities, Large Language Models (LLMs) still often struggle to accurately express the factual knowledge they possess, especially in cases where the LLMs' knowledge boundaries are ambiguous. To improve LLMs' factual expressions, we propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries, and then explicitly incorporates these representations as input features into prompts for LLMs to Align with factual knowledge. First, we prepare the dataset on knowledge question-answering (QA) samples by calculating two uncertainty estimations, including confidence score and semantic entropy, to represent the knowledge boundaries for LLMs. Subsequently, using the prepared dataset, we train a reward model that incorporates uncertainty estimations and then employ the Proximal Policy Optimization (PPO) algorithm for factuality alignment on LLMs. Experimental results indicate that, by integrating uncertainty representations in LLM alignment, the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions and refuse unknown questions on both in-domain and out-of-domain tasks, showing reliability improvements and good generalizability over various prompt- and training-based baselines.


Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment

arXiv.org Artificial Intelligence

As the capabilities of large language models (LLMs) have expanded dramatically, aligning these models with human values presents a significant challenge. Traditional alignment strategies rely heavily on human intervention, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), or on the self-alignment capacities of LLMs, which usually require a strong LLM's emergent ability to improve its original bad answer. To address these challenges, we propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT. This method encompasses stages of Question Analysis, Answer Guidance, and Safe Answer production. It is designed to enable LLMs to generate high-quality, safe responses throughout various stages of their development. Furthermore, we introduce the Mixture of insighTful Experts (MoTE) architecture, which applies mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency. The MoTE approach not only outperforms existing methods in aligning LLMs with human values but also highlights the benefits of using self-generated data, revealing the dual benefits of improved alignment and training efficiency.


CoSafe: Evaluating Large Language Model Safety in Multi-Turn Dialogue Coreference

arXiv.org Artificial Intelligence

As large language models (LLMs) constantly evolve, ensuring their safety remains a critical research problem. Previous red-teaming approaches for LLM safety have primarily focused on single prompt attacks or goal hijacking. To the best of our knowledge, we are the first to study LLM safety in multi-turn dialogue coreference. We created a dataset of 1,400 questions across 14 categories, each featuring multi-turn coreference safety attacks. We then conducted detailed evaluations on five widely used open-source LLMs. The results indicated that under multi-turn coreference safety attacks, the highest attack success rate was 56% with the LLaMA2-Chat-7b model, while the lowest was 13.9% with the Mistral-7B-Instruct model. These findings highlight the safety vulnerabilities in LLMs during dialogue coreference interactions.


Dynamic Stochastic Decoding Strategy for Open-Domain Dialogue Generation

arXiv.org Artificial Intelligence

Stochastic sampling strategies such as top-k and top-p have been widely used in dialogue generation task. However, as an open-domain chatting system, there will be two different conversation scenarios, i.e. chit-chat and knowledge-based question answering. In the former situation, responses diversity is essential due to the one-to-many nature in dialogue. The latter, on the other hand, requires less randomness given that stochastic decoding strategy entails the risk of generating incorrect information. As a result, an adaptive and flexible decoding strategy is needed to cope with these two scenarios simultaneously. To this end, we propose the dynamic decoding strategy (DDS), which can adjust the decoding space w.r.t. different contexts. In DDS, both sequence-level and token-level adaptive search can be achieved to adjust the decoding process in a unified framework. Besides, our adaptive algorithm can not only be used during model inference, but it can also be applied during the model training stage to further enhance the performance. Comprehensive experiments indicate that the proposed decoding strategy can consistently improve the performance of pre-trained dialogue models when coupled with four well-used stochastic decoding algorithms.


Role Prompting Guided Domain Adaptation with General Capability Preserve for Large Language Models

arXiv.org Artificial Intelligence

The growing interest in Large Language Models (LLMs) for specialized applications has revealed a significant challenge: when tailored to specific domains, LLMs tend to experience catastrophic forgetting, compromising their general capabilities and leading to a suboptimal user experience. Additionally, crafting a versatile model for multiple domains simultaneously often results in a decline in overall performance due to confusion between domains. In response to these issues, we present the RolE Prompting Guided Multi-Domain Adaptation (REGA) strategy. This novel approach effectively manages multi-domain LLM adaptation through three key components: 1) Self-Distillation constructs and replays general-domain exemplars to alleviate catastrophic forgetting. 2) Role Prompting assigns a central prompt to the general domain and a unique role prompt to each specific domain to minimize inter-domain confusion during training. 3) Role Integration reuses and integrates a small portion of domain-specific data to the general-domain data, which are trained under the guidance of the central prompt. The central prompt is used for a streamlined inference process, removing the necessity to switch prompts for different domains. Empirical results demonstrate that REGA effectively alleviates catastrophic forgetting and inter-domain confusion. This leads to improved domain-specific performance compared to standard fine-tuned models, while still preserving robust general capabilities.


UniRetriever: Multi-task Candidates Selection for Various Context-Adaptive Conversational Retrieval

arXiv.org Artificial Intelligence

Conversational retrieval refers to an information retrieval system that operates in an iterative and interactive manner, requiring the retrieval of various external resources, such as persona, knowledge, and even response, to effectively engage with the user and successfully complete the dialogue. However, most previous work trained independent retrievers for each specific resource, resulting in sub-optimal performance and low efficiency. Thus, we propose a multi-task framework function as a universal retriever for three dominant retrieval tasks during the conversation: persona selection, knowledge selection, and response selection. To this end, we design a dual-encoder architecture consisting of a context-adaptive dialogue encoder and a candidate encoder, aiming to attention to the relevant context from the long dialogue and retrieve suitable candidates by simply a dot product. Furthermore, we introduce two loss constraints to capture the subtle relationship between dialogue context and different candidates by regarding historically selected candidates as hard negatives. Extensive experiments and analysis establish state-of-the-art retrieval quality both within and outside its training domain, revealing the promising potential and generalization capability of our model to serve as a universal retriever for different candidate selection tasks simultaneously.


Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.


SELF: Self-Evolution with Language Feedback

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown impressive adaptability in various fields, yet the optimal pathway of autonomous model evolution remains underexplored. Drawing inspiration from the self-driven learning process of humans, we introduce SELF (Self-Evolution with Language Feedback), a novel learning framework that empowers LLMs to continually self-improve their abilities. SELF initiates with a meta-skill learning process that equips the LLMs with capabilities for self-feedback and self-refinement. SELF employs language-based feedback for detailed and nuanced evaluations, pinpointing response flaws and suggesting refinements. Subsequently, the model engages in an iterative process of self-evolution: they autonomously generate responses to unlabeled instructions, refine these responses interactively, and use the refined and filtered data for iterative self-training, thereby progressively boosting their capabilities. Moreover, the SELF framework equips the model with the ability to self-refine during inference, leading to further improved response quality. Our experiments on mathematical and general tasks demonstrate that SELF enables the model to continually selfimprove without human intervention. The SELF framework indicates a promising direction for the autonomous evolution of LLMs, transitioning them from passive information receivers to active participants in their development. Large Language Models (LLMs), like ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023), stand at the forefront of the AI revolution, demonstrating versatility across tasks. Despite their evident capabilities, the way towards achieving autonomous development of LLMs is still under-explored. The development of automatically improved LLMs can draw inspiration from human self-driven learning mechanisms. When facing new challenges, humans naturally engage in a learning cycle of initial attempts, introspective feedback, and behavior refinement. This leads to a critical question: "Can LLMs mimic the human learning process, utilizing self-refinement to enhance their inherent capabilities?"


YODA: Teacher-Student Progressive Learning for Language Models

arXiv.org Artificial Intelligence

Although large language models (LLMs) have demonstrated adeptness in a range of tasks, they still lag behind human learning efficiency. This disparity is often linked to the inherent human capacity to learn from basic examples, gradually generalize and handle more complex problems, and refine their skills with continuous feedback. Inspired by this, this paper introduces YODA, a novel teacher-student progressive learning framework that emulates the teacher-student education process to improve the efficacy of model fine-tuning. The framework operates on an interactive \textit{basic-generalized-harder} loop. The teacher agent provides tailored feedback on the student's answers, and systematically organizes the education process. This process unfolds by teaching the student basic examples, reinforcing understanding through generalized questions, and then enhancing learning by posing questions with progressively enhanced complexity. With the teacher's guidance, the student learns to iteratively refine its answer with feedback, and forms a robust and comprehensive understanding of the posed questions. The systematic procedural data, which reflects the progressive learning process of humans, is then utilized for model training. Taking math reasoning as a testbed, experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain (+17.01\% on GSM8K and +9.98\% on MATH). In addition, we find that training with curriculum learning further improves learning robustness.