Mhaisen, Naram
Slicing for AI: An Online Learning Framework for Network Slicing Supporting AI Services
Helmy, Menna, Abdellatif, Alaa Awad, Mhaisen, Naram, Mohamed, Amr, Erbad, Aiman
The forthcoming 6G networks will embrace a new realm of AI-driven services that requires innovative network slicing strategies, namely slicing for AI, which involves the creation of customized network slices to meet Quality of service (QoS) requirements of diverse AI services. This poses challenges due to time-varying dynamics of users' behavior and mobile networks. Thus, this paper proposes an online learning framework to optimize the allocation of computational and communication resources to AI services, while considering their unique key performance indicators (KPIs), such as accuracy, latency, and cost. We define a problem of optimizing the total accuracy while balancing conflicting KPIs, prove its NP-hardness, and propose an online learning framework for solving it in dynamic environments. We present a basic online solution and two variations employing a pre-learning elimination method for reducing the decision space to expedite the learning. Furthermore, we propose a biased decision space subset selection by incorporating prior knowledge to enhance the learning speed without compromising performance and present two alternatives of handling the selected subset. Our results depict the efficiency of the proposed solutions in converging to the optimal decisions, while reducing decision space and improving time complexity.
Optimistic Online Non-stochastic Control via FTRL
Mhaisen, Naram, Iosifidis, George
This paper brings the concept of "optimism" to the new and promising framework of online Non-stochastic Control (NSC). Namely, we study how can NSC benefit from a prediction oracle of unknown quality responsible for forecasting future costs. The posed problem is first reduced to an optimistic learning with delayed feedback problem, which is handled through the Optimistic Follow the Regularized Leader (OFTRL) algorithmic family. This reduction enables the design of OptFTRL-C, the first Disturbance Action Controller (DAC) with optimistic policy regret bounds. These new bounds are commensurate with the oracle's accuracy, ranging from $\mathcal{O}(1)$ for perfect predictions to the order-optimal $\mathcal{O}(\sqrt{T})$ even when all predictions fail. By addressing the challenge of incorporating untrusted predictions into control systems, our work contributes to the advancement of the NSC framework and paves the way towards effective and robust learning-based controllers.
Adaptive Online Non-stochastic Control
Mhaisen, Naram, Iosifidis, George
We tackle the problem of Non-stochastic Control (NSC) with the aim of obtaining algorithms whose policy regret is proportional to the difficulty of the controlled environment. Namely, we tailor the Follow The Regularized Leader (FTRL) framework to dynamical systems by using regularizers that are proportional to the actual witnessed costs. The main challenge arises from using the proposed adaptive regularizers in the presence of a state, or equivalently, a memory, which couples the effect of the online decisions and requires new tools for bounding the regret. Via new analysis techniques for NSC and FTRL integration, we obtain novel disturbance action controllers (DAC) with sublinear data adaptive policy regret bounds that shrink when the trajectory of costs has small gradients, while staying sub-linear even in the worst case. Keywords: Non-stochastic control; Follow the Regularized Leader; Online learning.
Reinforcement Learning for Intelligent Healthcare Systems: A Comprehensive Survey
Abdellatif, Alaa Awad, Mhaisen, Naram, Chkirbene, Zina, Mohamed, Amr, Erbad, Aiman, Guizani, Mohsen
The rapid increase in the percentage of chronic disease patients along with the recent pandemic pose immediate threats on healthcare expenditure and elevate causes of death. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, to improve services, access and scalability, while reducing costs. Reinforcement Learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for diverse applications and services. Thus, we conduct in this paper a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. This paper can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview for the I-health systems challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, Deep RL (DRL), and multi-agent RL models. After that, we provide a deep literature review for the applications of RL in I-health systems. In particular, three main areas have been tackled, i.e., edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and outline future research directions in driving the future success of RL in I-health systems, which opens the door for exploring some interesting and unsolved problems.
Pervasive AI for IoT Applications: Resource-efficient Distributed Artificial Intelligence
Baccour, Emna, Mhaisen, Naram, Abdellatif, Alaa Awad, Erbad, Aiman, Mohamed, Amr, Hamdi, Mounir, Guizani, Mohsen
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services, spanning from recommendation systems to robotics control and military surveillance. This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams. Designing accurate models using such data streams, to predict future insights and revolutionize the decision-taking process, inaugurates pervasive systems as a worthy paradigm for a better quality-of-life. The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems from mainly data collection to executing distributed computations with a promising alternative to centralized learning, presenting various challenges. In this context, a wise cooperation and resource scheduling should be envisaged among IoT devices (e.g., smartphones, smart vehicles) and infrastructure (e.g. edge nodes, and base stations) to avoid communication and computation overheads and ensure maximum performance. In this paper, we conduct a comprehensive survey of the recent techniques developed to overcome these resource challenges in pervasive AI systems. Specifically, we first present an overview of the pervasive computing, its architecture, and its intersection with artificial intelligence. We then review the background, applications and performance metrics of AI, particularly Deep Learning (DL) and online learning, running in a ubiquitous system. Next, we provide a deep literature review of communication-efficient techniques, from both algorithmic and system perspectives, of distributed inference, training and online learning tasks across the combination of IoT devices, edge devices and cloud servers. Finally, we discuss our future vision and research challenges.