Goto

Collaborating Authors

 Mezentsev, Gleb


Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs

arXiv.org Artificial Intelligence

Scalability issue plays a crucial role in productionizing modern recommender systems. Even lightweight architectures may suffer from high computational overload due to intermediate calculations, limiting their practicality in real-world applications. Specifically, applying full Cross-Entropy (CE) loss often yields state-of-the-art performance in terms of recommendations quality. Still, it suffers from excessive GPU memory utilization when dealing with large item catalogs. This paper introduces a novel Scalable Cross-Entropy (SCE) loss function in the sequential learning setup. It approximates the CE loss for datasets with large-size catalogs, enhancing both time efficiency and memory usage without compromising recommendations quality. Unlike traditional negative sampling methods, our approach utilizes a selective GPU-efficient computation strategy, focusing on the most informative elements of the catalog, particularly those most likely to be false positives. This is achieved by approximating the softmax distribution over a subset of the model outputs through the maximum inner product search. Experimental results on multiple datasets demonstrate the effectiveness of SCE in reducing peak memory usage by a factor of up to 100 compared to the alternatives, retaining or even exceeding their metrics values. The proposed approach also opens new perspectives for large-scale developments in different domains, such as large language models.


SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers

arXiv.org Artificial Intelligence

The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, which contain about half of the model parameters. We propose a new selective PEFT method, namely SparseGrad, that performs well on MLP blocks. We transfer layer gradients to a space where only about 1\% of the layer's elements remain significant. By converting gradients into a sparse structure, we reduce the number of updated parameters. We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task. In these experiments, with identical memory requirements, our method outperforms LoRA and MeProp, robust popular state-of-the-art PEFT approaches.