Goto

Collaborating Authors

 Metelli, Alberto Maria


Performance Improvement Bounds for Lipschitz Configurable Markov Decision Processes

arXiv.org Artificial Intelligence

The framework of the Configurable Markov Decision Processes (Conf-MDPs, Metelli et al., 2018, 2019, 2022) has been introduced in recent years to model a wide range of real-world scenarios in which an agent has the opportunity to alter some environmental parameters in order to improve its learning experience. Conf-MDPs can be thought to as an extension of the traditional Markov Decision Processes (MDP, Puterman, 1994) to account for scenarios that emerge quite often in the Reinforcement Learning (RL, Sutton and Barto, 2018) problems, in which the environment rarely represents an immutable entity and can, indeed, be subject to partial control. In the Conf-MDP framework, the activity of altering the environmental parameters is named environment configuration and serves different purposes. In the simplest scenario, the configuration is carried out by the agent itself that acts as a configurator. This might suggest, at a first sight, that environment configuration can be modeled within the agent actuation.


Information Capacity Regret Bounds for Bandits with Mediator Feedback

arXiv.org Artificial Intelligence

This work addresses the mediator feedback problem, a bandit game where the decision set consists of a number of policies, each associated with a probability distribution over a common space of outcomes. Upon choosing a policy, the learner observes an outcome sampled from its distribution and incurs the loss assigned to this outcome in the present round. We introduce the policy set capacity as an information-theoretic measure for the complexity of the policy set. Adopting the classical EXP4 algorithm, we provide new regret bounds depending on the policy set capacity in both the adversarial and the stochastic settings. For a selection of policy set families, we prove nearly-matching lower bounds, scaling similarly with the capacity. We also consider the case when the policies' distributions can vary between rounds, thus addressing the related bandits with expert advice problem, which we improve upon its prior results. Additionally, we prove a lower bound showing that exploiting the similarity between the policies is not possible in general under linear bandit feedback. Finally, for a full-information variant, we provide a regret bound scaling with the information radius of the policy set.


No-Regret Reinforcement Learning in Smooth MDPs

arXiv.org Artificial Intelligence

Obtaining no-regret guarantees for reinforcement learning (RL) in the case of problems with continuous state and/or action spaces is still one of the major open challenges in the field. Recently, a variety of solutions have been proposed, but besides very specific settings, the general problem remains unsolved. In this paper, we introduce a novel structural assumption on the Markov decision processes (MDPs), namely $\nu-$smoothness, that generalizes most of the settings proposed so far (e.g., linear MDPs and Lipschitz MDPs). To face this challenging scenario, we propose two algorithms for regret minimization in $\nu-$smooth MDPs. Both algorithms build upon the idea of constructing an MDP representation through an orthogonal feature map based on Legendre polynomials. The first algorithm, \textsc{Legendre-Eleanor}, archives the no-regret property under weaker assumptions but is computationally inefficient, whereas the second one, \textsc{Legendre-LSVI}, runs in polynomial time, although for a smaller class of problems. After analyzing their regret properties, we compare our results with state-of-the-art ones from RL theory, showing that our algorithms achieve the best guarantees.


Inverse Reinforcement Learning with Sub-optimal Experts

arXiv.org Artificial Intelligence

Inverse Reinforcement Learning (IRL) techniques deal with the problem of deducing a reward function that explains the behavior of an expert agent who is assumed to act optimally in an underlying unknown task. In several problems of interest, however, it is possible to observe the behavior of multiple experts with different degree of optimality (e.g., racing drivers whose skills ranges from amateurs to professionals). For this reason, in this work, we extend the IRL formulation to problems where, in addition to demonstrations from the optimal agent, we can observe the behavior of multiple sub-optimal experts. Given this problem, we first study the theoretical properties of the class of reward functions that are compatible with a given set of experts, i.e., the feasible reward set. Our results show that the presence of multiple sub-optimal experts can significantly shrink the set of compatible rewards. Furthermore, we study the statistical complexity of estimating the feasible reward set with a generative model. To this end, we analyze a uniform sampling algorithm that results in being minimax optimal whenever the sub-optimal experts' performance level is sufficiently close to the one of the optimal agent.


Parameterized Projected Bellman Operator

arXiv.org Artificial Intelligence

Approximate value iteration~(AVI) is a family of algorithms for reinforcement learning~(RL) that aims to obtain an approximation of the optimal value function. Generally, AVI algorithms implement an iterated procedure where each step consists of (i) an application of the Bellman operator and (ii) a projection step into a considered function space. Notoriously, the Bellman operator leverages transition samples, which strongly determine its behavior, as uninformative samples can result in negligible updates or long detours, whose detrimental effects are further exacerbated by the computationally intensive projection step. To address these issues, we propose a novel alternative approach based on learning an approximate version of the Bellman operator rather than estimating it through samples as in AVI approaches. This way, we are able to (i) generalize across transition samples and (ii) avoid the computationally intensive projection step. For this reason, we call our novel operator projected Bellman operator (PBO). We formulate an optimization problem to learn PBO for generic sequential decision-making problems, and we theoretically analyze its properties in two representative classes of RL problems. Furthermore, we theoretically study our approach under the lens of AVI and devise algorithmic implementations to learn PBO in offline and online settings by leveraging neural network parameterizations. Finally, we empirically showcase the benefits of PBO w.r.t. the regular Bellman operator on several RL problems.


Causal Feature Selection via Transfer Entropy

arXiv.org Artificial Intelligence

Machine learning algorithms are designed to capture complex relationships between features. In this context, the high dimensionality of data often results in poor model performance, with the risk of overfitting. Feature selection, the process of selecting a subset of relevant and non-redundant features, is, therefore, an essential step to mitigate these issues. However, classical feature selection approaches do not inspect the causal relationship between selected features and target, which can lead to misleading results in real-world applications. Causal discovery, instead, aims to identify causal relationships between features with observational data. In this paper, we propose a novel methodology at the intersection between feature selection and causal discovery, focusing on time series. We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures and leverages transfer entropy to estimate the causal flow of information from the features to the target in time series. Our approach enables the selection of features not only in terms of mere model performance but also captures the causal information flow. In this context, we provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases. Finally, we present numerical validations on synthetic and real-world regression problems, showing results competitive w.r.t. the considered baselines.


Pure Exploration under Mediators' Feedback

arXiv.org Machine Learning

Stochastic multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a stochastic reward. Within the context of best-arm identification (BAI) problems, the goal of the agent lies in finding the optimal arm, i.e., the one with highest expected reward, as accurately and efficiently as possible. Nevertheless, the sequential interaction protocol of classical BAI problems, where the agent has complete control over the arm being pulled at each round, does not effectively model several decision-making problems of interest (e.g., off-policy learning, partially controllable environments, and human feedback). For this reason, in this work, we propose a novel strict generalization of the classical BAI problem that we refer to as best-arm identification under mediators' feedback (BAI-MF). More specifically, we consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a stochastic and possibly unknown policy. The mediator, then, communicates back to the agent the pulled arm together with the observed reward. In this setting, the agent's goal lies in sequentially choosing which mediator to query to identify with high probability the optimal arm while minimizing the identification time, i.e., the sample complexity. To this end, we first derive and analyze a statistical lower bound on the sample complexity specific to our general mediator feedback scenario. Then, we propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner. As our theory verifies, this algorithm matches the lower bound both almost surely and in expectation. Finally, we extend these results to cases where the mediators' policies are unknown to the learner obtaining comparable results.


Nonlinear Feature Aggregation: Two Algorithms driven by Theory

arXiv.org Artificial Intelligence

Many real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues, as well as the risk of overfitting. Ideally, only relevant and non-redundant features should be considered to preserve the complete information of the original data and limit the dimensionality. Dimensionality reduction and feature selection are common preprocessing techniques addressing the challenge of efficiently dealing with high-dimensional data. Dimensionality reduction methods control the number of features in the dataset while preserving its structure and minimizing information loss. Feature selection aims to identify the most relevant features for a task, discarding the less informative ones. Previous works have proposed approaches that aggregate features depending on their correlation without discarding any of them and preserving their interpretability through aggregation with the mean. A limitation of methods based on correlation is the assumption of linearity in the relationship between features and target. In this paper, we relax such an assumption in two ways. First, we propose a bias-variance analysis for general models with additive Gaussian noise, leading to a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function. Then, we extend the approach assuming that a generalized linear model regulates the relationship between features and target. A deviance analysis leads to a second dimensionality reduction algorithm (GenLinCFA), applicable to a larger class of regression problems and classification settings. Finally, we test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.


Best Arm Identification for Stochastic Rising Bandits

arXiv.org Artificial Intelligence

Stochastic Rising Bandits (SRBs) model sequential decision-making problems in which the expected rewards of the available options increase every time they are selected. This setting captures a wide range of scenarios in which the available options are learning entities whose performance improves (in expectation) over time. While previous works addressed the regret minimization problem, this paper, focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs. In this scenario, given a fixed budget of rounds, we are asked to provide a recommendation about the best option at the end of the identification process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. Then, we prove that, with a sufficiently large budget, they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process. Furthermore, we derive a lower bound on the error probability, matched by our R-SR (up to logarithmic factors), and illustrate how the need for a sufficiently large budget is unavoidable in the SRB setting. Finally, we numerically validate the proposed algorithms in both synthetic and real-world environments and compare them with the currently available BAI strategies.


Dynamical Linear Bandits

arXiv.org Artificial Intelligence

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order $\widetilde{\mathcal{O}} \Big( \frac{d \sqrt{T}}{(1-\overline{\rho})^{3/2}} \Big)$, where $\overline{\rho}$ is a measure of the stability of the system, and $d$ is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.