Goto

Collaborating Authors

 Mesnard, Thomas


Gemma 3 Technical Report

arXiv.org Artificial Intelligence

We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.


Gemma: Open Models Based on Gemini Research and Technology

arXiv.org Artificial Intelligence

This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.


RecurrentGemma: Moving Past Transformers for Efficient Open Language Models

arXiv.org Artificial Intelligence

We introduce RecurrentGemma, an open language model which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide a pre-trained model with 2B non-embedding parameters, and an instruction tuned variant. Both models achieve comparable performance to Gemma-2B despite being trained on fewer tokens.


Direct Language Model Alignment from Online AI Feedback

arXiv.org Artificial Intelligence

Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.


Nash Learning from Human Feedback

arXiv.org Machine Learning

Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human preferences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.


A Survey of Temporal Credit Assignment in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

The Credit Assignment Problem (CAP) refers to the longstanding challenge of Reinforcement Learning (RL) agents to associate actions with their long-term consequences. Solving the CAP is a crucial step towards the successful deployment of RL in the real world since most decision problems provide feedback that is noisy, delayed, and with little or no information about the causes. These conditions make it hard to distinguish serendipitous outcomes from those caused by informed decision-making. However, the mathematical nature of credit and the CAP remains poorly understood and defined. In this survey, we review the state of the art of Temporal Credit Assignment (CA) in deep RL. We propose a unifying formalism for credit that enables equitable comparisons of state of the art algorithms and improves our understanding of the trade-offs between the various methods. We cast the CAP as the problem of learning the influence of an action over an outcome from a finite amount of experience. We discuss the challenges posed by delayed effects, transpositions, and a lack of action influence, and analyse how existing methods aim to address them. Finally, we survey the protocols to evaluate a credit assignment method, and suggest ways to diagnoses the sources of struggle for different credit assignment methods. Overall, this survey provides an overview of the field for new-entry practitioners and researchers, it offers a coherent perspective for scholars looking to expedite the starting stages of a new study on the CAP, and it suggests potential directions for future research


RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback

arXiv.org Artificial Intelligence

Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences. However, gathering high-quality human preference labels can be a time-consuming and expensive endeavor. RL from AI Feedback (RLAIF), introduced by Bai et al., offers a promising alternative that leverages a powerful off-the-shelf LLM to generate preferences in lieu of human annotators. Across the tasks of summarization, helpful dialogue generation, and harmless dialogue generation, RLAIF achieves comparable or superior performance to RLHF, as rated by human evaluators. Furthermore, RLAIF demonstrates the ability to outperform a supervised fine-tuned baseline even when the LLM preference labeler is the same size as the policy. In another experiment, directly prompting the LLM for reward scores achieves superior performance to the canonical RLAIF setup, where LLM preference labels are first distilled into a reward model. Finally, we conduct extensive studies on techniques for generating aligned AI preferences. Our results suggest that RLAIF can achieve human-level performance, offering a potential solution to the scalability limitations of RLHF.


Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments

arXiv.org Artificial Intelligence

Consider the problem of exploration in sparse-reward or reward-free environments, such as in Montezuma's Revenge. In the curiosity-driven paradigm, the agent is rewarded for how much each realized outcome differs from their predicted outcome. But using predictive error as intrinsic motivation is fragile in stochastic environments, as the agent may become trapped by high-entropy areas of the state-action space, such as a "noisy TV". In this work, we study a natural solution derived from structural causal models of the world: Our key idea is to learn representations of the future that capture precisely the unpredictable aspects of each outcome -- which we use as additional input for predictions, such that intrinsic rewards only reflect the predictable aspects of world dynamics. First, we propose incorporating such hindsight representations into models to disentangle "noise" from "novelty", yielding Curiosity in Hindsight: a simple and scalable generalization of curiosity that is robust to stochasticity. Second, we instantiate this framework for the recently introduced BYOL-Explore algorithm as our prime example, resulting in the noise-robust BYOL-Hindsight. Third, we illustrate its behavior under a variety of different stochasticities in a grid world, and find improvements over BYOL-Explore in hard-exploration Atari games with sticky actions. Notably, we show state-of-the-art results in exploring Montezuma's Revenge with sticky actions, while preserving performance in the non-sticky setting.


Generalization of Equilibrium Propagation to Vector Field Dynamics

arXiv.org Machine Learning

The biological plausibility of the backpropagation algorithm has long been doubted by neuroscientists. Two major reasons are that neurons would need to send two different types of signal in the forward and backward phases, and that pairs of neurons would need to communicate through symmetric bidirectional connections. We present a simple two-phase learning procedure for fixed point recurrent networks that addresses both these issues. In our model, neurons perform leaky integration and synaptic weights are updated through a local mechanism. Our learning method generalizes Equilibrium Propagation to vector field dynamics, relaxing the requirement of an energy function. As a consequence of this generalization, the algorithm does not compute the true gradient of the objective function, but rather approximates it at a precision which is proven to be directly related to the degree of symmetry of the feedforward and feedback weights. We show experimentally that our algorithm optimizes the objective function.