Goto

Collaborating Authors

 Mesbah, Zacharia


AutoPETIII: The Tracer Frontier. What Frontier?

arXiv.org Artificial Intelligence

For the last three years, the AutoPET competition gathered the medical imaging community around a hot topic: lesion segmentation on Positron Emitting Tomography (PET) scans. Each year a different aspect of the problem is presented; in 2024 the multiplicity of existing and used tracers was at the core of the challenge. Specifically, this year's edition aims to develop a fully automatic algorithm capable of performing lesion segmentation on a PET/CT scan, without knowing the tracer, which can either be a FDG or PSMA-based tracer. In this paper we describe how we used the nnUNetv2[1] framework to train two sets of 6 fold ensembles of models to perform fully automatic PET/CT lesion segmentation as well as a MIP-CNN to choose which set of models to use for segmentation.


Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge

arXiv.org Artificial Intelligence

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway trees remains prohibitively time-consuming. While significant efforts have been made towards enhancing airway modelling, current public-available datasets concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for prognosis, a strong airway-derived biomarker (Hazard ratio>1.5, p<0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.