Goto

Collaborating Authors

 Merzenich, Michael


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Moving bars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlation technique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time. These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typically show considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Moving bars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlation technique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time. These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typically show considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Movingbars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlationtechnique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time.These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typicallyshow considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings

Neural Information Processing Systems

One of the current challenges to understanding neural information processing in biological systems is to decipher the "code" carried by large populations of neurons acting in parallel. We present an algorithm for automated discovery of stochastic firing patterns in large ensembles of neurons. The algorithm, from the "Helmholtz Machine" family, attempts to predict the observed spike patterns in the data. The model consists of an observable layer which is directly activated by the input spike patterns, and hidden units that are activated throughascending connections from the input layer. The hidden unit activity can be propagated down to the observable layer to create a prediction of the data pattern that produced it.


Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings

Neural Information Processing Systems

One of the current challenges to understanding neural information processing in biological systems is to decipher the "code" carried by large populations of neurons acting in parallel. We present an algorithm for automated discovery of stochastic firing patterns in large ensembles of neurons. The algorithm, from the "Helmholtz Machine" family, attempts to predict the observed spike patterns in the data. The model consists of an observable layer which is directly activated by the input spike patterns, and hidden units that are activated through ascending connections from the input layer. The hidden unit activity can be propagated down to the observable layer to create a prediction of the data pattern that produced it.


Neural Network Simulation of Somatosensory Representational Plasticity

Neural Information Processing Systems

The brain represents the skin surface as a topographic map in the somatosensory cortex. This map has been shown experimentally to be modifiable in a use-dependent fashion throughout life. We present a neural network simulation of the competitive dynamics underlying this cortical plasticity by detailed analysis of receptive field properties of model neurons during simulations of skin coactivation, corticallesion, digit amputation and nerve section. 1 INTRODUCTION Plasticity of adult somatosensory cortical maps has been demonstrated experimentally in a variety of maps and species (Kass, et al., 1983; Wall, 1988). This report focuses on modelling primary somatosensory cortical plasticity in the adult monkey. We model the long-term consequences of four specific experiments, taken in pairs.


Neural Network Simulation of Somatosensory Representational Plasticity

Neural Information Processing Systems

The brain represents the skin surface as a topographic map in the somatosensory cortex. This map has been shown experimentally to be modifiable in a use-dependent fashion throughout life. We present a neural network simulation of the competitive dynamics underlying this cortical plasticity by detailed analysis of receptive field properties of model neurons during simulations of skin coactivation, cortical lesion, digit amputation and nerve section. 1 INTRODUCTION Plasticity of adult somatosensory cortical maps has been demonstrated experimentally in a variety of maps and species (Kass, et al., 1983; Wall, 1988). This report focuses on modelling primary somatosensory cortical plasticity in the adult monkey. We model the long-term consequences of four specific experiments, taken in pairs. With the first pair, behaviorally controlled stimulation of restricted skin surfaces (Jenkins, et al., 1990) and induced cortical lesions (Jenkins and Merzenich, 1987), we demonstrate that Hebbian-type dynamics is sufficient to account for the inverse relationship between cortical magnification (area of cortical map representing a unit area of skin) and receptive field size (skin surface which when stimulated excites a cortical unit) (Sur, et al., 1980; Grajski and Merzenich, 1990). These results are obtained with several variations of the basic model. We conclude that relying solely on cortical magnification and receptive field size will not disambiguate the contributions of each of the myriad circuits known to occur in the brain. With the second pair, digit amputation (Merzenich, et al., 1984) and peripheral nerve cut (without regeneration) (Merzenich, ct al., 1983), we explore the role of local excitatory connections in the model Neural Network Simulation of Somatosensory Representational Plasticity S3