Goto

Collaborating Authors

 Mertan, Alican


Towards Multi-Morphology Controllers with Diversity and Knowledge Distillation

arXiv.org Artificial Intelligence

Finding controllers that perform well across multiple morphologies is an important milestone for large-scale robotics, in line with recent advances via foundation models in other areas of machine learning. However, the challenges of learning a single controller to control multiple morphologies make the `one robot one task' paradigm dominant in the field. To alleviate these challenges, we present a pipeline that: (1) leverages Quality Diversity algorithms like MAP-Elites to create a dataset of many single-task/single-morphology teacher controllers, then (2) distills those diverse controllers into a single multi-morphology controller that performs well across many different body plans by mimicking the sensory-action patterns of the teacher controllers via supervised learning. The distilled controller scales well with the number of teachers/morphologies and shows emergent properties. It generalizes to unseen morphologies in a zero-shot manner, providing robustness to morphological perturbations and instant damage recovery. Lastly, the distilled controller is also independent of the teacher controllers -- we can distill the teacher's knowledge into any controller model, making our approach synergistic with architectural improvements and existing training algorithms for teacher controllers.


Investigating Premature Convergence in Co-optimization of Morphology and Control in Evolved Virtual Soft Robots

arXiv.org Artificial Intelligence

Evolving virtual creatures is a field with a rich history and recently it has been getting more attention, especially in the soft robotics domain. The compliance of soft materials endows soft robots with complex behavior, but it also makes their design process unintuitive and in need of automated design. Despite the great interest, evolved virtual soft robots lack the complexity, and co-optimization of morphology and control remains a challenging problem. Prior work identifies and investigates a major issue with the co-optimization process -- fragile co-adaptation of brain and body resulting in premature convergence of morphology. In this work, we expand the investigation of this phenomenon by comparing learnable controllers with proprioceptive observations and fixed controllers without any observations, whereas in the latter case, we only have the optimization of the morphology. Our experiments in two morphology spaces and two environments that vary in complexity show, concrete examples of the existence of high-performing regions in the morphology space that are not able to be discovered during the co-optimization of the morphology and control, yet exist and are easily findable when optimizing morphologies alone. Thus this work clearly demonstrates and characterizes the challenges of optimizing morphology during co-optimization. Based on these results, we propose a new body-centric framework to think about the co-optimization problem which helps us understand the issue from a search perspective. We hope the insights we share with this work attract more attention to the problem and help us to enable efficient brain-body co-optimization.


Modular Controllers Facilitate the Co-Optimization of Morphology and Control in Soft Robots

arXiv.org Artificial Intelligence

Soft robotics is a rapidly growing area of robotics research that would benefit greatly from design automation, given the challenges of manually engineering complex, compliant, and generally non-intuitive robot body plans and behaviors. It has been suggested that a major hurdle currently limiting soft robot brain-body co-optimization is the fragile specialization between a robot's controller and the particular body plan it controls, resulting in premature convergence. Here we posit that modular controllers are more robust to changes to a robot's body plan. We demonstrate a decreased reduction in locomotion performance after morphological mutations to soft robots with modular controllers, relative to those with similar global controllers - leading to fitter offspring. Moreover, we show that the increased transferability of modular controllers to similar body plans enables more effective brain-body co-optimization of soft robots, resulting in an increased rate of positive morphological mutations and higher overall performance of evolved robots. We hope that this work helps provide specific methods to improve soft robot design automation in this particular setting, while also providing evidence to support our understanding of the challenges of brain-body co-optimization more generally.


GaussianMLR: Learning Implicit Class Significance via Calibrated Multi-Label Ranking

arXiv.org Artificial Intelligence

Existing multi-label frameworks only exploit the information deduced from the bipartition of the labels into a positive and negative set. Therefore, they do not benefit from the ranking order between positive labels, which is the concept we introduce in this paper. We propose a novel multi-label ranking method: GaussianMLR, which aims to learn implicit class significance values that determine the positive label ranks instead of treating them as of equal importance, by following an approach that unifies ranking and classification tasks associated with multi-label ranking. Due to the scarcity of public datasets, we introduce eight synthetic datasets generated under varying importance factors to provide an enriched and controllable experimental environment for this study. On both real-world and synthetic datasets, we carry out extensive comparisons with relevant baselines and evaluate the performance on both of the two sub-tasks. We show that our method is able to accurately learn a representation of the incorporated positive rank order, which is not only consistent with the ground truth but also proportional to the underlying information. We strengthen our claims empirically by conducting comprehensive experimental studies.


RLSEP: Learning Label Ranks for Multi-label Classification

arXiv.org Artificial Intelligence

Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes. The ranking approach for multi-label learning problems received attention for its success in multi-label classification, with one of the well-known approaches being pairwise label ranking. However, most existing methods assume that only partial information about the preference relation is known, which is inferred from the partition of labels into a positive and negative set, then treat labels with equal importance. In this paper, we focus on the unique challenge of ranking when the order of the true label set is provided. We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs, and make use of the ranking information present in the input. Our method achieves the best reported performance measures on both synthetic and real world ranked datasets and shows improvements on overall ranking of labels. Our experimental results demonstrate that our approach is generalizable to a variety of multi-label classification and ranking tasks, while revealing a calibration towards a certain ranking ordering.