Goto

Collaborating Authors

 Mert Gurbuzbalaban


A Universally Optimal Multistage Accelerated Stochastic Gradient Method

Neural Information Processing Systems

We study the problem of minimizing a strongly convex, smooth function when we have noisy estimates of its gradient. We propose a novel multistage accelerated algorithm that is universally optimal in the sense that it achieves the optimal rate both in the deterministic and stochastic case and operates without knowledge of noise characteristics. The algorithm consists of stages that use a stochastic version of Nesterov's method with a specific restart and parameters selected to achieve the fastest reduction in the bias-variance terms in the convergence rate bounds.


First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise

Neural Information Processing Systems

Stochastic gradient descent (SGD) has been widely used in machine learning due to its computational efficiency and favorable generalization properties. Recently, it has been empirically demonstrated that the gradient noise in several deep learning settings admits a non-Gaussian, heavy-tailed behavior. This suggests that the gradient noise can be modeled by using α-stable distributions, a family of heavytailed distributions that appear in the generalized central limit theorem. In this context, SGD can be viewed as a discretization of a stochastic differential equation (SDE) driven by a Lévy motion, and the metastability results for this SDE can then be used for illuminating the behavior of SGD, especially in terms of'preferring wide minima'. While this approach brings a new perspective for analyzing SGD, it is limited in the sense that, due to the time discretization, SGD might admit a significantly different behavior than its continuous-time limit. Intuitively, the behaviors of these two systems are expected to be similar to each other only when the discretization step is sufficiently small; however, to the best of our knowledge, there is no theoretical understanding on how small the step-size should be chosen in order to guarantee that the discretized system inherits the properties of the continuous-time system. In this study, we provide formal theoretical analysis where we derive explicit conditions for the step-size such that the metastability behavior of the discrete-time system is similar to its continuous-time limit. We show that the behaviors of the two systems are indeed similar for small step-sizes and we identify how the error depends on the algorithm and problem parameters. We illustrate our results with simulations on a synthetic model and neural networks.


A Universally Optimal Multistage Accelerated Stochastic Gradient Method

Neural Information Processing Systems

We study the problem of minimizing a strongly convex, smooth function when we have noisy estimates of its gradient. We propose a novel multistage accelerated algorithm that is universally optimal in the sense that it achieves the optimal rate both in the deterministic and stochastic case and operates without knowledge of noise characteristics. The algorithm consists of stages that use a stochastic version of Nesterov's method with a specific restart and parameters selected to achieve the fastest reduction in the bias-variance terms in the convergence rate bounds.


First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise

Neural Information Processing Systems

Stochastic gradient descent (SGD) has been widely used in machine learning due to its computational efficiency and favorable generalization properties. Recently, it has been empirically demonstrated that the gradient noise in several deep learning settings admits a non-Gaussian, heavy-tailed behavior. This suggests that the gradient noise can be modeled by using α-stable distributions, a family of heavytailed distributions that appear in the generalized central limit theorem. In this context, SGD can be viewed as a discretization of a stochastic differential equation (SDE) driven by a Lévy motion, and the metastability results for this SDE can then be used for illuminating the behavior of SGD, especially in terms of'preferring wide minima'. While this approach brings a new perspective for analyzing SGD, it is limited in the sense that, due to the time discretization, SGD might admit a significantly different behavior than its continuous-time limit. Intuitively, the behaviors of these two systems are expected to be similar to each other only when the discretization step is sufficiently small; however, to the best of our knowledge, there is no theoretical understanding on how small the step-size should be chosen in order to guarantee that the discretized system inherits the properties of the continuous-time system. In this study, we provide formal theoretical analysis where we derive explicit conditions for the step-size such that the metastability behavior of the discrete-time system is similar to its continuous-time limit. We show that the behaviors of the two systems are indeed similar for small step-sizes and we identify how the error depends on the algorithm and problem parameters. We illustrate our results with simulations on a synthetic model and neural networks.