Goto

Collaborating Authors

 Merel, Josh S.


Robust Imitation of Diverse Behaviors

Neural Information Processing Systems

Deep generative models have recently shown great promise in imitation learning for motor control. Given enough data, even supervised approaches can do one-shot imitation learning; however, they are vulnerable to cascading failures when the agent trajectory diverges from the demonstrations. Compared to purely supervised methods, Generative Adversarial Imitation Learning (GAIL) can learn more robust controllers from fewer demonstrations, but is inherently mode-seeking and more difficult to train. In this paper, we show how to combine the favourable aspects of these two approaches. The base of our model is a new type of variational autoencoder on demonstration trajectories that learns semantic policy embeddings. We show that these embeddings can be learned on a 9 DoF Jaco robot arm in reaching tasks, and then smoothly interpolated with a resulting smooth interpolation of reaching behavior. Leveraging these policy representations, we develop a new version of GAIL that (1) is much more robust than the purely-supervised controller, especially with few demonstrations, and (2) avoids mode collapse, capturing many diverse behaviors when GAIL on its own does not. We demonstrate our approach on learning diverse gaits from demonstration on a 2D biped and a 62 DoF 3D humanoid in the MuJoCo physics environment.


A multi-agent control framework for co-adaptation in brain-computer interfaces

Neural Information Processing Systems

In a closed-loop brain-computer interface (BCI), adaptive decoders are used to learn parameters suited to decoding the user's neural response. Feedback to the user provides information which permits the neural tuning to also adapt. We present an approach to model this process of co-adaptation between the encoding model of the neural signal and the decoding algorithm as a multi-agent formulation of the linear quadratic Gaussian (LQG) control problem. In simulation we characterize how decoding performance improves as the neural encoding and adaptive decoder optimize, qualitatively resembling experimentally demonstrated closed-loop improvement. We then propose a novel, modified decoder update rule which is aware of the fact that the encoder is also changing and show it can improve simulated co-adaptation dynamics. Our modeling approach offers promise for gaining insights into co-adaptation as well as improving user learning of BCI control in practical settings.