Meng, Xiangxu
Cross-Training with Multi-View Knowledge Fusion for Heterogenous Federated Learning
Qi, Zhuang, Meng, Lei, He, Weihao, Zhang, Ruohan, Wang, Yu, Qi, Xin, Meng, Xiangxu
Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve the generalization capability. However, the data heterogeneity between sources may lead models to gradually forget previously acquired knowledge when undergoing cross-training to adapt to new tasks or data sources. We argue that integrating personalized and global knowledge to gather information from multiple perspectives could potentially improve performance. To achieve this goal, this paper presents a novel approach that enhances federated learning through a cross-training scheme incorporating multi-view information. Specifically, the proposed method, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies, which enhances collaborative advantages between clients and achieves an efficient federated learning process. The multi-view knowledge-guided representation learning module leverages fused prototypical knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange, as well as to ensure consistency between local and global knowledge. The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples. Extensive experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study. The results demonstrated that FedCT alleviates knowledge forgetting from both local and global views, which enables it outperform state-of-the-art methods.
Cross-Silo Prototypical Calibration for Federated Learning with Non-IID Data
Qi, Zhuang, Meng, Lei, Chen, Zitan, Hu, Han, Lin, Hui, Meng, Xiangxu
Federated Learning aims to learn a global model on the server side that generalizes to all clients in a privacy-preserving manner, by leveraging the local models from different clients. Existing solutions focus on either regularizing the objective functions among clients or improving the aggregation mechanism for the improved model generalization capability. However, their performance is typically limited by the dataset biases, such as the heterogeneous data distributions and the missing classes. To address this issue, this paper presents a cross-silo prototypical calibration method (FedCSPC), which takes additional prototype information from the clients to learn a unified feature space on the server side. Specifically, FedCSPC first employs the Data Prototypical Modeling (DPM) module to learn data patterns via clustering to aid calibration. Subsequently, the cross-silo prototypical calibration (CSPC) module develops an augmented contrastive learning method to improve the robustness of the calibration, which can effectively project cross-source features into a consistent space while maintaining clear decision boundaries. Moreover, the CSPC module's ease of implementation and plug-and-play characteristics make it even more remarkable. Experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study, and the results verified that FedCSPC is capable of learning the consistent features across different data sources of the same class under the guidance of calibrated model, which leads to better performance than the state-of-the-art methods. The source codes have been released at https://github.com/qizhuang-qz/FedCSPC.
Mlinear: Rethink the Linear Model for Time-series Forecasting
Li, Wei, Meng, Xiangxu, Chen, Chuhao, Chen, Jianing
Recently, significant advancements have been made in time-series forecasting research, with an increasing focus on analyzing the nature of time-series data, e.g, channel-independence (CI) and channel-dependence (CD), rather than solely focusing on designing sophisticated forecasting models. However, current research has primarily focused on either CI or CD in isolation, and the challenge of effectively combining these two opposing properties to achieve a synergistic effect remains an unresolved issue. In this paper, we carefully examine the opposing properties of CI and CD, and raise a practical question that has not been effectively answered, e.g.,"How to effectively mix the CI and CD properties of time series to achieve better predictive performance?" To answer this question, we propose Mlinear (MIX-Linear), a simple yet effective method based mainly on linear layers. The design philosophy of Mlinear mainly includes two aspects:(1) dynamically tuning the CI and CD properties based on the time semantics of different input time series, and (2) providing deep supervision to adjust the individual performance of the "CI predictor" and "CD predictor". In addition, empirically, we introduce a new loss function that significantly outperforms the widely used mean squared error (MSE) on multiple datasets. Experiments on time-series datasets covering multiple fields and widely used have demonstrated the superiority of our method over PatchTST which is the lateset Transformer-based method in terms of the MSE and MAE metrics on 7 datasets with identical sequence inputs (336 or 512). Specifically, our method significantly outperforms PatchTST with a ratio of 21:3 at 336 sequence length input and 29:10 at 512 sequence length input. Additionally, our approach has a 10 $\times$ efficiency advantage at the unit level, taking into account both training and inference times.