Goto

Collaborating Authors

 Meng, Wenchao


PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection

arXiv.org Artificial Intelligence

Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that addresses scenarios where target 3D training samples are unavailable due to practical concerns like privacy protection. This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects. PointAD provides a unified framework to comprehend 3D anomalies from both points and pixels. In this framework, PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space. To capture the generic anomaly semantics into PointAD, we propose hybrid representation learning that optimizes the learnable text prompts from 3D and 2D through auxiliary point clouds. The collaboration optimization between point and pixel representations jointly facilitates our model to grasp underlying 3D anomaly patterns, contributing to detecting and segmenting anomalies of unseen diverse 3D objects. Through the alignment of 3D and 2D space, our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner. Extensive experiments show the superiority of PointAD in ZS 3D anomaly detection across diverse unseen objects.


FairDD: Fair Dataset Distillation via Synchronized Matching

arXiv.org Artificial Intelligence

Condensing large datasets into smaller synthetic counterparts has demonstrated its promise for image classification. However, previous research has overlooked a crucial concern in image recognition: ensuring that models trained on condensed datasets are unbiased towards protected attributes (PA), such as gender and race. Our investigation reveals that dataset distillation (DD) fails to alleviate the unfairness towards minority groups within original datasets. Moreover, this bias typically worsens in the condensed datasets due to their smaller size. To bridge the research gap, we propose a novel fair dataset distillation (FDD) framework, namely FairDD, which can be seamlessly applied to diverse matching-based DD approaches, requiring no modifications to their original architectures. The key innovation of FairDD lies in synchronously matching synthetic datasets to PA-wise groups of original datasets, rather than indiscriminate alignment to the whole distributions in vanilla DDs, dominated by majority groups. This synchronized matching allows synthetic datasets to avoid collapsing into majority groups and bootstrap their balanced generation to all PA groups. Consequently, FairDD could effectively regularize vanilla DDs to favor biased generation toward minority groups while maintaining the accuracy of target attributes. Theoretical analyses and extensive experimental evaluations demonstrate that FairDD significantly improves fairness compared to vanilla DD methods, without sacrificing classification accuracy. Its consistent superiority across diverse DDs, spanning Distribution and Gradient Matching, establishes it as a versatile FDD approach.


Label-Free Multivariate Time Series Anomaly Detection

arXiv.org Artificial Intelligence

Anomaly detection in multivariate time series (MTS) has been widely studied in one-class classification (OCC) setting. The training samples in OCC are assumed to be normal, which is difficult to guarantee in practical situations. Such a case may degrade the performance of OCC-based anomaly detection methods which fit the training distribution as the normal distribution. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for MTS anomaly detection via dynamic Graph and entity-aware normalizing Flow. MTGFlow first estimates the density of the entire training samples and then identifies anomalous instances based on the density of the test samples within the fitted distribution. This relies on a widely accepted assumption that anomalous instances exhibit more sparse densities than normal ones, with no reliance on the clean training dataset. However, it is intractable to directly estimate the density due to complex dependencies among entities and their diverse inherent characteristics. To mitigate this, we utilize the graph structure learning model to learn interdependent and evolving relations among entities, which effectively captures complex and accurate distribution patterns of MTS. In addition, our approach incorporates the unique characteristics of individual entities by employing an entity-aware normalizing flow. This enables us to represent each entity as a parameterized normal distribution. Furthermore, considering that some entities present similar characteristics, we propose a cluster strategy that capitalizes on the commonalities of entities with similar characteristics, resulting in more precise and detailed density estimation. We refer to this cluster-aware extension as MTGFlow_cluster. Extensive experiments are conducted on six widely used benchmark datasets, in which MTGFlow and MTGFlow cluster demonstrate their superior detection performance.


Large Language Model Guided Knowledge Distillation for Time Series Anomaly Detection

arXiv.org Artificial Intelligence

Self-supervised methods have gained prominence in time series anomaly detection due to the scarcity of available annotations. Nevertheless, they typically demand extensive training data to acquire a generalizable representation map, which conflicts with scenarios of a few available samples, thereby limiting their performance. To overcome the limitation, we propose \textbf{AnomalyLLM}, a knowledge distillation-based time series anomaly detection approach where the student network is trained to mimic the features of the large language model (LLM)-based teacher network that is pretrained on large-scale datasets. During the testing phase, anomalies are detected when the discrepancy between the features of the teacher and student networks is large. To circumvent the student network from learning the teacher network's feature of anomalous samples, we devise two key strategies. 1) Prototypical signals are incorporated into the student network to consolidate the normal feature extraction. 2) We use synthetic anomalies to enlarge the representation gap between the two networks. AnomalyLLM demonstrates state-of-the-art performance on 15 datasets, improving accuracy by at least 14.5\% in the UCR dataset.


Detecting Multivariate Time Series Anomalies with Zero Known Label

arXiv.org Artificial Intelligence

Multivariate time series anomaly detection has been extensively studied under the semi-supervised setting, where a training dataset with all normal instances is required. However, preparing such a dataset is very laborious since each single data instance should be fully guaranteed to be normal. It is, therefore, desired to explore multivariate time series anomaly detection methods based on the dataset without any label knowledge. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for multivariate time series anomaly detection via dynamic graph and entity-aware normalizing flow, leaning only on a widely accepted hypothesis that abnormal instances exhibit sparse densities than the normal. However, the complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation, let alone to detect anomalies based on the estimated possibility distribution. To tackle these problems, we propose to learn the mutual and dynamic relations among entities via a graph structure learning model, which helps to model accurate distribution of multivariate time series. Moreover, taking account of distinct characteristics of the individual entities, an entity-aware normalizing flow is developed to describe each entity into a parameterized normal distribution, thereby producing fine-grained density estimation. Incorporating these two strategies, MTGFlow achieves superior anomaly detection performance. Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC\%. Codes will be released at https://github.com/zqhang/Detecting-Multivariate-Time-Series-Anomalies-with-Zero-Known-Label.