Goto

Collaborating Authors

 Meng, Rui


Uni-Parser: Unified Semantic Parser for Question Answering on Knowledge Base and Database

arXiv.org Artificial Intelligence

Parsing natural language questions into executable logical forms is a useful and interpretable way to perform question answering on structured data such as knowledge bases (KB) or databases (DB). However, existing approaches on semantic parsing cannot adapt to both modalities, as they suffer from the exponential growth of the logical form candidates and can hardly generalize to unseen data. In this work, we propose Uni-Parser, a unified semantic parser for question answering (QA) on both KB and DB. We introduce the primitive (relation and entity in KB, and table name, column name and cell value in DB) as an essential element in our framework. The number of primitives grows linearly with the number of retrieved relations in KB and DB, preventing us from dealing with exponential logic form candidates. We leverage the generator to predict final logical forms by altering and composing topranked primitives with different operations (e.g. select, where, count). With sufficiently pruned search space by a contrastive primitive ranker, the generator is empowered to capture the composition of primitives enhancing its generalization ability. We achieve competitive results on multiple KB and DB QA benchmarks more efficiently, especially in the compositional and zero-shot settings.


Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model

arXiv.org Machine Learning

Many modern time-series datasets contain large numbers of output response variables sampled for prolonged periods of time. For example, in neuroscience, the activities of 100s-1000's of neurons are recorded during behaviors and in response to sensory stimuli. Multi-output Gaussian process models leverage the nonparametric nature of Gaussian processes to capture structure across multiple outputs. However, this class of models typically assumes that the correlations between the output response variables are invariant in the input space. Stochastic linear mixing models (SLMM) assume the mixture coefficients depend on input, making them more flexible and effective to capture complex output dependence. However, currently, the inference for SLMMs is intractable for large datasets, making them inapplicable to several modern time-series problems. In this paper, we propose a new regression framework, the orthogonal stochastic linear mixing model (OSLMM) that introduces an orthogonal constraint amongst the mixing coefficients. This constraint reduces the computational burden of inference while retaining the capability to handle complex output dependence. We provide Markov chain Monte Carlo inference procedures for both SLMM and OSLMM and demonstrate superior model scalability and reduced prediction error of OSLMM compared with state-of-the-art methods on several real-world applications. In neurophysiology recordings, we use the inferred latent functions for compact visualization of population responses to auditory stimuli, and demonstrate superior results compared to a competing method (GPFA). Together, these results demonstrate that OSLMM will be useful for the analysis of diverse, large-scale time-series datasets.


Collaborative Nonstationary Multivariate Gaussian Process Model

arXiv.org Machine Learning

Currently, multi-output Gaussian process regression models either do not model nonstationarity or are associated with severe computational burdens and storage demands. Nonstationary multi-variate Gaussian process models (NMGP) use a nonstationary covariance function with an input-dependent linear model of coregionalisation to jointly model input-dependent correlation, scale, and smoothness of outputs. Variational sparse approximation relies on inducing points to enable scalable computations. Here, we take the best of both worlds: considering an inducing variable framework on the underlying latent functions in NMGP, we propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP). For CNMGP, we derive computationally tractable variational bounds amenable to doubly stochastic variational inference. Together, this allows us to model data in which outputs do not share a common input set, with a computational complexity that is independent of the size of the inputs and outputs. We illustrate the performance of our method on synthetic data and three real datasets and show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.


Spatiotemporal Attention for Multivariate Time Series Prediction and Interpretation

arXiv.org Machine Learning

Multivariate time series modeling and prediction problems are abundant in many machine learning application domains. Accurate interpretation of such prediction outcomes from a machine learning model that explicitly captures temporal correlations can significantly benefit the domain experts. In this context, temporal attention has been successfully applied to isolate the important time steps for the input time series. However, in multivariate time series problems, spatial interpretation is also critical to understand the contributions of different variables on the model outputs. We propose a novel deep learning architecture, called spatiotemporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables. STAM is a causal (i.e., only depends on past inputs and does not use future inputs) and scalable (i.e., scales well with an increase in the number of variables) approach that is comparable to the state-of-the-art models in terms of computational tractability. We demonstrate our models' performance on two popular public datasets and a domain-specific dataset. When compared with the baseline models, the results show that STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate spatiotemporal interpretability. The learned attention weights are validated from a domain knowledge perspective for these real-world datasets.


Nonstationary Multivariate Gaussian Processes for Electronic Health Records

arXiv.org Machine Learning

We propose multivariate nonstationary Gaussian processes for jointly modeling multiple clinical variables, where the key parameters, length-scales, standard deviations and the correlations between the observed output, are all time dependent. We perform posterior inference via Hamiltonian Monte Carlo (HMC). We also provide methods for obtaining computationally efficient gradient-based maximum a posteriori (MAP) estimates. We validate our model on synthetic data as well as on electronic health records (EHR) data from Kaiser Permanente (KP). We show that the proposed model provides better predictive performance over a stationary model as well as uncovers interesting latent correlation processes across vitals which are potentially predictive of patient risk.


Integrating Transformer and Paraphrase Rules for Sentence Simplification

arXiv.org Artificial Intelligence

Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from ma- chine translation studies and implicitly learned simplification mapping rules from normal- simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we pro- pose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state- of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/ Sanqiang/text_simplification.