Plotting

 Meng, Hengyu


Text2VDM: Text to Vector Displacement Maps for Expressive and Interactive 3D Sculpting

arXiv.org Artificial Intelligence

Professional 3D asset creation often requires diverse sculpting brushes to add surface details and geometric structures. Despite recent progress in 3D generation, producing reusable sculpting brushes compatible with artists' workflows remains an open and challenging problem. These sculpting brushes are typically represented as vector displacement maps (VDMs), which existing models cannot easily generate compared to natural images. This paper presents Text2VDM, a novel framework for text-to-VDM brush generation through the deformation of a dense planar mesh guided by score distillation sampling (SDS). The original SDS loss is designed for generating full objects and struggles with generating desirable sub-object structures from scratch in brush generation. We refer to this issue as semantic coupling, which we address by introducing classifier-free guidance (CFG) weighted blending of prompt tokens to SDS, resulting in a more accurate target distribution and semantic guidance. Experiments demonstrate that Text2VDM can generate diverse, high-quality VDM brushes for sculpting surface details and geometric structures. Our generated brushes can be seamlessly integrated into mainstream modeling software, enabling various applications such as mesh stylization and real-time interactive modeling.


HeadEvolver: Text to Head Avatars via Expressive and Attribute-Preserving Mesh Deformation

arXiv.org Artificial Intelligence

We present HeadEvolver, a novel framework to generate stylized head avatars from text guidance. HeadEvolver uses locally learnable mesh deformation from a template head mesh, producing high-quality digital assets for detail-preserving editing and animation. To tackle the challenges of lacking fine-grained and semantic-aware local shape control in global deformation through Jacobians, we introduce a trainable parameter as a weighting factor for the Jacobian at each triangle to adaptively change local shapes while maintaining global correspondences and facial features. Moreover, to ensure the coherence of the resulting shape and appearance from different viewpoints, we use pretrained image diffusion models for differentiable rendering with regularization terms to refine the deformation under text guidance. Extensive experiments demonstrate that our method can generate diverse head avatars with an articulated mesh that can be edited seamlessly in 3D graphics software, facilitating downstream applications such as more efficient animation with inherited blend shapes and semantic consistency.


Efficient LLM Inference on CPUs

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable performance and tremendous potential across a wide range of tasks. However, deploying these models has been challenging due to the astronomical amount of model parameters, which requires a demand for large memory capacity and high memory bandwidth. In this paper, we propose an effective approach that can make the deployment of LLMs more efficiently. We support an automatic INT4 weight-only quantization flow and design a special LLM runtime with highly-optimized kernels to accelerate the LLM inference on CPUs. We demonstrate the general applicability of our approach on popular LLMs including Llama2, Llama, GPT-NeoX, and showcase the extreme inference efficiency on CPUs.


An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs

arXiv.org Artificial Intelligence

In recent years, Transformer-based language models have become the standard approach for natural language processing tasks. However, stringent throughput and latency requirements in industrial applications are limiting their adoption. To mitigate the gap, model compression techniques such as structured pruning are being used to improve inference efficiency. However, most existing neural network inference runtimes lack adequate support for structured sparsity. In this paper, we propose an efficient sparse deep learning inference software stack for Transformer-based language models where the weights are pruned with constant block size. Our sparse software accelerator leverages Intel Deep Learning Boost to maximize the performance of sparse matrix - dense matrix multiplication (commonly abbreviated as SpMM) on CPUs. Our SpMM kernel outperforms the existing sparse libraries (oneMKL, TVM, and LIBXSMM) by an order of magnitude on a wide range of GEMM shapes under 5 representative sparsity ratios (70%, 75%, 80%, 85%, 90%). Moreover, our SpMM kernel shows up to 5x speedup over dense GEMM kernel of oneDNN, a well-optimized dense library widely used in industry. We apply our sparse accelerator on widely-used Transformer-based language models including Bert-Mini, DistilBERT, Bert-Base, and BERT-Large. Our sparse inference software shows up to 1.5x speedup over Neural Magic's Deepsparse under same configurations on Xeon on Amazon Web Services under proxy production latency constraints. We also compare our solution with two framework-based inference solutions, ONNX Runtime and PyTorch, and demonstrate up to 37x speedup over ONNX Runtime and 345x over PyTorch on Xeon under the latency constraints. All the source code is publicly available on Github: https://github.com/intel/intel-extension-for-transformers.


Fast DistilBERT on CPUs

arXiv.org Artificial Intelligence

Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime.