Meng, Helen
Seamless Language Expansion: Enhancing Multilingual Mastery in Self-Supervised Models
Xu, Jing, Wu, Minglin, Wu, Xixin, Meng, Helen
Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.
Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers
Zhang, Tianhua, Li, Kun, Luo, Hongyin, Wu, Xixin, Glass, James, Meng, Helen
Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever's preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models' generalization and adaptation capabilities. In this paper, we introduce AdaQR ($\textbf{Ada}$ptive $\textbf{Q}$uery $\textbf{R}$ewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only ~$10\%$ of rewrite annotations from the seed dataset training split. The models are then utilized to generate rewrite candidates for each query instance. A novel approach is then proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query by marginalizing the Top-$K$ passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.
Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching
Zhang, Xiaoying, Peng, Baolin, Tian, Ye, Zhou, Jingyan, Zhang, Yipeng, Mi, Haitao, Meng, Helen
Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM's ability to effectively acquire new knowledge from raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. In addition, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM's knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on Llama2 family models reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.
Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning
Wu, Haibin, Li, Xu, Liu, Andy T., Wu, Zhiyong, Meng, Helen, Lee, Hung-yi
Previous works have shown that automatic speaker verification (ASV) is seriously vulnerable to malicious spoofing attacks, such as replay, synthetic speech, and recently emerged adversarial attacks. Great efforts have been dedicated to defending ASV against replay and synthetic speech; however, only a few approaches have been explored to deal with adversarial attacks. All the existing approaches to tackle adversarial attacks for ASV require the knowledge for adversarial samples generation, but it is impractical for defenders to know the exact attack algorithms that are applied by the in-the-wild attackers. This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms. Inspired by self-supervised learning models (SSLMs) that possess the merits of alleviating the superficial noise in the inputs and reconstructing clean samples from the interrupted ones, this work regards adversarial perturbations as one kind of noise and conducts adversarial defense for ASV by SSLMs. Specifically, we propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection. Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%. Moreover, since there is no common metric for evaluating the adversarial defense performance for ASV, this work also formalizes evaluation metrics for adversarial defense considering both purification and detection based approaches into account. We sincerely encourage future works to benchmark their approaches based on the proposed evaluation framework.
Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation
Zhang, Xiaoying, Peng, Baolin, Tian, Ye, Zhou, Jingyan, Jin, Lifeng, Song, Linfeng, Mi, Haitao, Meng, Helen
Despite showing increasingly human-like abilities, large language models (LLMs) often struggle with factual inaccuracies, i.e. "hallucinations", even when they hold relevant knowledge. To address these hallucinations, current approaches typically necessitate high-quality human factuality annotations. In this work, we explore Self-Alignment for Factuality, where we leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality. Specifically, we incorporate Self-Eval, a self-evaluation component, to prompt an LLM to validate the factuality of its own generated responses solely based on its internal knowledge. Additionally, we design Self-Knowledge Tuning (SK-Tuning) to augment the LLM's self-evaluation ability by improving the model's confidence estimation and calibration. We then utilize these self-annotated responses to fine-tune the model via Direct Preference Optimization algorithm. We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks on TruthfulQA and BioGEN.
Injecting linguistic knowledge into BERT for Dialogue State Tracking
Feng, Xiaohan, Wu, Xixin, Meng, Helen
Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference processes lack transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not necessitate annotations or additional training data. The injection of the extracted knowledge necessitates the addition of only simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with the syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.
UNIT-DSR: Dysarthric Speech Reconstruction System Using Speech Unit Normalization
Wang, Yuejiao, Wu, Xixin, Wang, Disong, Meng, Lingwei, Meng, Helen
Dysarthric speech reconstruction (DSR) systems aim to automatically convert dysarthric speech into normal-sounding speech. The technology eases communication with speakers affected by the neuromotor disorder and enhances their social inclusion. NED-based (Neural Encoder-Decoder) systems have significantly improved the intelligibility of the reconstructed speech as compared with GAN-based (Generative Adversarial Network) approaches, but the approach is still limited by training inefficiency caused by the cascaded pipeline and auxiliary tasks of the content encoder, which may in turn affect the quality of reconstruction. Inspired by self-supervised speech representation learning and discrete speech units, we propose a Unit-DSR system, which harnesses the powerful domain-adaptation capacity of HuBERT for training efficiency improvement and utilizes speech units to constrain the dysarthric content restoration in a discrete linguistic space. Compared with NED approaches, the Unit-DSR system only consists of a speech unit normalizer and a Unit HiFi-GAN vocoder, which is considerably simpler without cascaded sub-modules or auxiliary tasks. Results on the UASpeech corpus indicate that Unit-DSR outperforms competitive baselines in terms of content restoration, reaching a 28.2% relative average word error rate reduction when compared to original dysarthric speech, and shows robustness against speed perturbation and noise.
Multi-view MidiVAE: Fusing Track- and Bar-view Representations for Long Multi-track Symbolic Music Generation
Lin, Zhiwei, Chen, Jun, Tang, Boshi, Sha, Binzhu, Yang, Jing, Ju, Yaolong, Fan, Fan, Kang, Shiyin, Wu, Zhiyong, Meng, Helen
Variational Autoencoders (VAEs) constitute a crucial component of neural symbolic music generation, among which some works have yielded outstanding results and attracted considerable attention. Nevertheless, previous VAEs still encounter issues with overly long feature sequences and generated results lack contextual coherence, thus the challenge of modeling long multi-track symbolic music still remains unaddressed. To this end, we propose Multi-view MidiVAE, as one of the pioneers in VAE methods that effectively model and generate long multi-track symbolic music. The Multi-view MidiVAE utilizes the two-dimensional (2-D) representation, OctupleMIDI, to capture relationships among notes while reducing the feature sequences length. Moreover, we focus on instrumental characteristics and harmony as well as global and local information about the musical composition by employing a hybrid variational encoding-decoding strategy to integrate both Track- and Bar-view MidiVAE features. Objective and subjective experimental results on the CocoChorales dataset demonstrate that, compared to the baseline, Multi-view MidiVAE exhibits significant improvements in terms of modeling long multi-track symbolic music.
Cross-Speaker Encoding Network for Multi-Talker Speech Recognition
Kang, Jiawen, Meng, Lingwei, Cui, Mingyu, Guo, Haohan, Wu, Xixin, Liu, Xunying, Meng, Helen
End-to-end multi-talker speech recognition has garnered great interest as an effective approach to directly transcribe overlapped speech from multiple speakers. Current methods typically adopt either 1) single-input multiple-output (SIMO) models with a branched encoder, or 2) single-input single-output (SISO) models based on attention-based encoder-decoder architecture with serialized output training (SOT). In this work, we propose a Cross-Speaker Encoding (CSE) network to address the limitations of SIMO models by aggregating cross-speaker representations. Furthermore, the CSE model is integrated with SOT to leverage both the advantages of SIMO and SISO while mitigating their drawbacks. To the best of our knowledge, this work represents an early effort to integrate SIMO and SISO for multi-talker speech recognition. Experiments on the two-speaker LibrispeechMix dataset show that the CES model reduces word error rate (WER) by 8% over the SIMO baseline. The CSE-SOT model reduces WER by 10% overall and by 16% on high-overlap speech compared to the SOT model.
StyleSpeech: Self-supervised Style Enhancing with VQ-VAE-based Pre-training for Expressive Audiobook Speech Synthesis
Chen, Xueyuan, Wang, Xi, Zhang, Shaofei, He, Lei, Wu, Zhiyong, Wu, Xixin, Meng, Helen
The expressive quality of synthesized speech for audiobooks is limited by generalized model architecture and unbalanced style distribution in the training data. To address these issues, in this paper, we propose a self-supervised style enhancing method with VQ-VAE-based pre-training for expressive audiobook speech synthesis. Firstly, a text style encoder is pre-trained with a large amount of unlabeled text-only data. Secondly, a spectrogram style extractor based on VQ-VAE is pre-trained in a self-supervised manner, with plenty of audio data that covers complex style variations. Then a novel architecture with two encoder-decoder paths is specially designed to model the pronunciation and high-level style expressiveness respectively, with the guidance of the style extractor. Both objective and subjective evaluations demonstrate that our proposed method can effectively improve the naturalness and expressiveness of the synthesized speech in audiobook synthesis especially for the role and out-of-domain scenarios.