Goto

Collaborating Authors

 Meng, Han


Deconstructing Depression Stigma: Integrating AI-driven Data Collection and Analysis with Causal Knowledge Graphs

arXiv.org Artificial Intelligence

Mental-illness stigma is a persistent social problem, hampering both treatment-seeking and recovery. Accordingly, there is a pressing need to understand it more clearly, but analyzing the relevant data is highly labor-intensive. Therefore, we designed a chatbot to engage participants in conversations; coded those conversations qualitatively with AI assistance; and, based on those coding results, built causal knowledge graphs to decode stigma. The results we obtained from 1,002 participants demonstrate that conversation with our chatbot can elicit rich information about people's attitudes toward depression, while our AI-assisted coding was strongly consistent with human-expert coding. Our novel approach combining large language models (LLMs) and causal knowledge graphs uncovered patterns in individual responses and illustrated the interrelationships of psychological constructs in the dataset as a whole. The paper also discusses these findings' implications for HCI researchers in developing digital interventions, decomposing human psychological constructs, and fostering inclusive attitudes.


Population Aware Diffusion for Time Series Generation

arXiv.org Artificial Intelligence

Diffusion models have shown promising ability in generating high-quality time series (TS) data. Despite the initial success, existing works mostly focus on the authenticity of data at the individual level, but pay less attention to preserving the population-level properties on the entire dataset. Such population-level properties include value distributions for each dimension and distributions of certain functional dependencies (e.g., cross-correlation, CC) between different dimensions. For instance, when generating house energy consumption TS data, the value distributions of the outside temperature and the kitchen temperature should be preserved, as well as the distribution of CC between them. Preserving such TS population-level properties is critical in maintaining the statistical insights of the datasets, mitigating model bias, and augmenting downstream tasks like TS prediction. Yet, it is often overlooked by existing models. Hence, data generated by existing models often bear distribution shifts from the original data. We propose Population-aware Diffusion for Time Series (PaD-TS), a new TS generation model that better preserves the population-level properties. The key novelties of PaD-TS include 1) a new training method explicitly incorporating TS population-level property preservation, and 2) a new dual-channel encoder model architecture that better captures the TS data structure. Empirical results in major benchmark datasets show that PaD-TS can improve the average CC distribution shift score between real and synthetic data by 5.9x while maintaining a performance comparable to state-of-the-art models on individual-level authenticity.


Exploring the Potential of Human-LLM Synergy in Advancing Qualitative Analysis: A Case Study on Mental-Illness Stigma

arXiv.org Artificial Intelligence

Qualitative analysis is a challenging, yet crucial aspect of advancing research in the field of Human-Computer Interaction (HCI). Recent studies show that large language models (LLMs) can perform qualitative coding within existing schemes, but their potential for collaborative human-LLM discovery and new insight generation in qualitative analysis is still underexplored. To bridge this gap and advance qualitative analysis by harnessing the power of LLMs, we propose CHALET, a novel methodology that leverages the human-LLM collaboration paradigm to facilitate conceptualization and empower qualitative research. The CHALET approach involves LLM-supported data collection, performing both human and LLM deductive coding to identify disagreements, and performing collaborative inductive coding on these disagreement cases to derive new conceptual insights. We validated the effectiveness of CHALET through its application to the attribution model of mental-illness stigma, uncovering implicit stigmatization themes on cognitive, emotional and behavioral dimensions. We discuss the implications for future research, methodology, and the transdisciplinary opportunities CHALET presents for the HCI community and beyond.


Large Language Models in Medical Term Classification and Unexpected Misalignment Between Response and Reasoning

arXiv.org Artificial Intelligence

This study assesses the ability of state-of-the-art large language models (LLMs) including GPT-3.5, GPT-4, Falcon, and LLaMA 2 to identify patients with mild cognitive impairment (MCI) from discharge summaries and examines instances where the models' responses were misaligned with their reasoning. Utilizing the MIMIC-IV v2.2 database, we focused on a cohort aged 65 and older, verifying MCI diagnoses against ICD codes and expert evaluations. The data was partitioned into training, validation, and testing sets in a 7:2:1 ratio for model fine-tuning and evaluation, with an additional metastatic cancer dataset from MIMIC III used to further assess reasoning consistency. GPT-4 demonstrated superior interpretative capabilities, particularly in response to complex prompts, yet displayed notable response-reasoning inconsistencies. In contrast, open-source models like Falcon and LLaMA 2 achieved high accuracy but lacked explanatory reasoning, underscoring the necessity for further research to optimize both performance and interpretability. The study emphasizes the significance of prompt engineering and the need for further exploration into the unexpected reasoning-response misalignment observed in GPT-4. The results underscore the promise of incorporating LLMs into healthcare diagnostics, contingent upon methodological advancements to ensure accuracy and clinical coherence of AI-generated outputs, thereby improving the trustworthiness of LLMs for medical decision-making.


Information Filter upon Diversity-Improved Decoding for Diversity-Faithfulness Tradeoff in NLG

arXiv.org Artificial Intelligence

Some Natural Language Generation (NLG) tasks require both faithfulness and diversity. The decoding strategy is intensively related to the quality of the generated text. Strategies such as beam search, greedy search, etc., perform with low diversity and high repetition. On the other hand, guided decoding, the solution towards diversity, may generate unfaithful expressions. To this end, this paper presents Information Filter upon Diversity-Improved Decoding (IFDID) to obtain the tradeoff between diversity and faithfulness. IFDID is a two-stage decoding strategy leveraging the proposed Enhance-Filter framework, which achieves the tradeoff by increasing the probabilities of some typical tokens being selected and subsequently filtering them by their information amount. To verify the effectiveness, we compare our method with other baselines on related CommonGEN, RocStories and AdGen benchmarks, which cover Chinese and English datasets. Our numerical experimental results and human evaluation outcomes verify the effectiveness of the proposed approach, as our approach achieves a 1.24 higher ROUGE score describing faithfulness as well as higher diversity represented by 62.5% higher upon Dist-2 than traditional approaches, demonstrating that IFDID is a novel SOTA decoding strategy for the tradeoff between diversity and faithfulness.