Goto

Collaborating Authors

 Meng, Fan


Physics-Informed Residual Neural Ordinary Differential Equations for Enhanced Tropical Cyclone Intensity Forecasting

arXiv.org Artificial Intelligence

Accurate tropical cyclone (TC) intensity prediction is crucial for mitigating storm hazards, yet its complex dynamics pose challenges to traditional methods. Here, we introduce a Physics-Informed Residual Neural Ordinary Differential Equation (PIR-NODE) model to precisely forecast TC intensity evolution. This model leverages the powerful non-linear fitting capabilities of deep learning, integrates residual connections to enhance model depth and training stability, and explicitly models the continuous temporal evolution of TC intensity using Neural ODEs. Experimental results in the SHIPS dataset demonstrate that the PIR-NODE model achieves a significant improvement in 24-hour intensity prediction accuracy compared to traditional statistical models and benchmark deep learning methods, with a 25. 2\% reduction in the root mean square error (RMSE) and a 19.5\% increase in R-square (R2) relative to a baseline of neural network. Crucially, the residual structure effectively preserves initial state information, and the model exhibits robust generalization capabilities. This study details the PIR-NODE model architecture, physics-informed integration strategies, and comprehensive experimental validation, revealing the substantial potential of deep learning techniques in predicting complex geophysical systems and laying the foundation for future refined TC forecasting research.


GenoCraft: A Comprehensive, User-Friendly Web-Based Platform for High-Throughput Omics Data Analysis and Visualization

arXiv.org Artificial Intelligence

The surge in high-throughput omics data has reshaped the landscape of biological research, underlining the need for powerful, user-friendly data analysis and interpretation tools. This paper presents GenoCraft, a web-based comprehensive software solution designed to handle the entire pipeline of omics data processing. GenoCraft offers a unified platform featuring advanced bioinformatics tools, covering all aspects of omics data analysis. It encompasses a range of functionalities, such as normalization, quality control, differential analysis, network analysis, pathway analysis, and diverse visualization techniques. This software makes state-of-the-art omics data analysis more accessible to a wider range of users. With GenoCraft, researchers and data scientists have access to an array of cutting-edge bioinformatics tools under a user-friendly interface, making it a valuable resource for managing and analyzing large-scale omics data. The API with an interactive web interface is publicly available at https://genocraft.stanford.