Goto

Collaborating Authors

 Mendo, Adriano


Multi-Agent Reinforcement Learning with Common Policy for Antenna Tilt Optimization

arXiv.org Artificial Intelligence

This paper presents a method for optimizing wireless networks by adjusting cell parameters that affect both the performance of the cell being optimized and the surrounding cells. The method uses multiple reinforcement learning agents that share a common policy and take into account information from neighboring cells to determine the state and reward. In order to avoid impairing network performance during the initial stages of learning, agents are pre-trained in an earlier phase of offline learning. During this phase, an initial policy is obtained using feedback from a static network simulator and considering a wide variety of scenarios. Finally, agents can intelligently tune the cell parameters of a test network by suggesting small incremental changes, slowly guiding the network toward an optimal configuration. The agents propose optimal changes using the experience gained with the simulator in the pre-training phase, but they can also continue to learn from current network readings after each change. The results show how the proposed approach significantly improves the performance gains already provided by expert system-based methods when applied to remote antenna tilt optimization. The significant gains of this approach have truly been observed when compared with a similar method in which the state and reward do not incorporate information from neighboring cells.


Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna Tuning

arXiv.org Artificial Intelligence

Future generations of mobile networks are expected to contain more and more antennas with growing complexity and more parameters. Optimizing these parameters is necessary for ensuring the good performance of the network. The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies. Reinforcement learning is a promising technique to address this challenge but existing methods often use local optimizations to scale to large network deployments. We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally. By using a value decomposition approach, our algorithm can be trained from a global reward function instead of relying on an ad-hoc decomposition of the network performance across the different cells. The algorithm uses a graph neural network architecture which generalizes to different network topologies and learns coordination behaviors. We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.