Memon, Nasir
WavePulse: Real-time Content Analytics of Radio Livestreams
Mittal, Govind, Gupta, Sarthak, Wagle, Shruti, Chopra, Chirag, DeMattee, Anthony J, Memon, Nasir, Ahamad, Mustaque, Hegde, Chinmay
Radio remains a pervasive medium for mass information dissemination, with AM/FM stations reaching more Americans than either smartphone-based social networking or live television. Increasingly, radio broadcasts are also streamed online and accessed over the Internet. We present WavePulse, a framework that records, documents, and analyzes radio content in real-time. While our framework is generally applicable, we showcase the efficacy of WavePulse in a collaborative project with a team of political scientists focusing on the 2024 Presidential Elections. We use WavePulse to monitor livestreams of 396 news radio stations over a period of three months, processing close to 500,000 hours of audio streams. These streams were converted into time-stamped, diarized transcripts and analyzed to track answer key political science questions at both the national and state levels. Our analysis revealed how local issues interacted with national trends, providing insights into information flow. Our results demonstrate WavePulse's efficacy in capturing and analyzing content from radio livestreams sourced from the Web. Code and dataset can be accessed at \url{https://wave-pulse.io}.
TraSCE: Trajectory Steering for Concept Erasure
Jain, Anubhav, Kobayashi, Yuya, Shibuya, Takashi, Takida, Yuhta, Memon, Nasir, Togelius, Julian, Mitsufuji, Yuki
Recent advancements in text-to-image diffusion models have brought them to the public spotlight, becoming widely accessible and embraced by everyday users. However, these models have been shown to generate harmful content such as not-safe-for-work (NSFW) images. While approaches have been proposed to erase such abstract concepts from the models, jail-breaking techniques have succeeded in bypassing such safety measures. In this paper, we propose TraSCE, an approach to guide the diffusion trajectory away from generating harmful content. Our approach is based on negative prompting, but as we show in this paper, conventional negative prompting is not a complete solution and can easily be bypassed in some corner cases. To address this issue, we first propose a modification of conventional negative prompting. Furthermore, we introduce a localized loss-based guidance that enhances the modified negative prompting technique by steering the diffusion trajectory. We demonstrate that our proposed method achieves state-of-the-art results on various benchmarks in removing harmful content including ones proposed by red teams; and erasing artistic styles and objects. Our proposed approach does not require any training, weight modifications, or training data (both image or prompt), making it easier for model owners to erase new concepts.
Classifier-Free Guidance inside the Attraction Basin May Cause Memorization
Jain, Anubhav, Kobayashi, Yuya, Shibuya, Takashi, Takida, Yuhta, Memon, Nasir, Togelius, Julian, Mitsufuji, Yuki
Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to understand the memorization phenomenon, and propose a simple yet effective approach to mitigate it. We argue that memorization occurs because of an attraction basin in the denoising process which steers the diffusion trajectory towards a memorized image. However, this can be mitigated by guiding the diffusion trajectory away from the attraction basin by not applying classifier-free guidance until an ideal transition point occurs from which classifier-free guidance is applied. This leads to the generation of non-memorized images that are high in image quality and well-aligned with the conditioning mechanism. To further improve on this, we present a new guidance technique, \emph{opposite guidance}, that escapes the attraction basin sooner in the denoising process. We demonstrate the existence of attraction basins in various scenarios in which memorization occurs, and we show that our proposed approach successfully mitigates memorization.
Fair GANs through model rebalancing for extremely imbalanced class distributions
Jain, Anubhav, Memon, Nasir, Togelius, Julian
Deep generative models require large amounts of training data. This often poses a problem as the collection of datasets can be expensive and difficult, in particular datasets that are representative of the appropriate underlying distribution (e.g. demographic). This introduces biases in datasets which are further propagated in the models. We present an approach to construct an unbiased generative adversarial network (GAN) from an existing biased GAN by rebalancing the model distribution. We do so by generating balanced data from an existing imbalanced deep generative model using an evolutionary algorithm and then using this data to train a balanced generative model. Additionally, we propose a bias mitigation loss function that minimizes the deviation of the learned class distribution from being equiprobable. We show results for the StyleGAN2 models while training on the Flickr Faces High Quality (FFHQ) dataset for racial fairness and see that the proposed approach improves on the fairness metric by almost 5 times, whilst maintaining image quality. We further validate our approach by applying it to an imbalanced CIFAR10 dataset where we show that we can obtain comparable fairness and image quality as when training on a balanced CIFAR10 dataset which is also twice as large. Lastly, we argue that the traditionally used image quality metrics such as Frechet inception distance (FID) are unsuitable for scenarios where the class distributions are imbalanced and a balanced reference set is not available.
Gotcha: Real-Time Video Deepfake Detection via Challenge-Response
Mittal, Govind, Hegde, Chinmay, Memon, Nasir
With the rise of AI-enabled Real-Time Deepfakes (RTDFs), the integrity of online video interactions has become a growing concern. RTDFs have now made it feasible to replace an imposter's face with their victim in live video interactions. Such advancement in deepfakes also coaxes detection to rise to the same standard. However, existing deepfake detection techniques are asynchronous and hence ill-suited for RTDFs. To bridge this gap, we propose a challenge-response approach that establishes authenticity in live settings. We focus on talking-head style video interaction and present a taxonomy of challenges that specifically target inherent limitations of RTDF generation pipelines. We evaluate representative examples from the taxonomy by collecting a unique dataset comprising eight challenges, which consistently and visibly degrades the quality of state-of-the-art deepfake generators. These results are corroborated both by humans and a new automated scoring function, leading to 88.6\% and 73.2% AUC, respectively. The findings underscore the promising potential of challenge-response systems for explainable and scalable real-time deepfake detection in practical scenarios.