Goto

Collaborating Authors

 Melvin Gauci



Generalizing GANs: A Turing Perspective

Neural Information Processing Systems

Recently, a new class of machine learning algorithms has emerged, where models and discriminators are generated in a competitive setting. The most prominent example is Generative Adversarial Networks (GANs). In this paper we examine how these algorithms relate to the Turing test, and derive what--from a Turing perspective--can be considered their defining features. Based on these features, we outline directions for generalizing GANs--resulting in the family of algorithms referred to as Turing Learning. One such direction is to allow the discriminators to interact with the processes from which the data samples are obtained, making them "interrogators", as in the Turing test.