Mellstrom, Jeff
Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models
Smyth, Padhraic, Mellstrom, Jeff
We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA)) is unique in terms of providing end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system. The ground component of the DSN consists of three ground station complexes located in California, Spain and Australia, giving full 24-hour coverage for deep space communications.
Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models
Smyth, Padhraic, Mellstrom, Jeff
Padhraic Smyth, J eft" Mellstrom Jet Propulsion Laboratory 238-420 California Institute of Technology Pasadena, CA 91109 Abstract We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL)for the National Aeronautics and Space Administration (NASA)) is unique in terms of ...
Fault Diagnosis of Antenna Pointing Systems using Hybrid Neural Network and Signal Processing Models
Smyth, Padhraic, Mellstrom, Jeff
We describe in this paper a novel application of neural networks to system health monitoring of a large antenna for deep space communications. The paper outlines our approach to building a monitoring system using hybrid signal processing and neural network techniques, including autoregressive modelling, pattern recognition, and Hidden Markov models. We discuss several problems which are somewhat generic in applications of this kind - in particular we address the problem of detecting classes which were not present in the training data. Experimental results indicate that the proposed system is sufficiently reliable for practical implementation. 1 Background: The Deep Space Network The Deep Space Network (DSN) (designed and operated by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA)) is unique in terms of providing end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system. The ground component of the DSN consists of three ground station complexes located in California, Spain and Australia, giving full 24-hour coverage for deep space communications.