Meisam Razaviyayn
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn
Recent applications that arise in machine learning have surged significant interest in solving min-max saddle point games. This problem has been extensively studied in the convex-concave regime for which a global equilibrium solution can be computed efficiently. In this paper, we study the problem in the non-convex regime and show that an ฮต-first order stationary point of the game can be computed when one of the player's objective can be optimized to global optimality efficiently. In particular, we first consider the case where the objective of one of the players satisfies the Polyak-ลojasiewicz (PL) condition.
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods
Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn
Recent applications that arise in machine learning have surged significant interest in solving min-max saddle point games. This problem has been extensively studied in the convex-concave regime for which a global equilibrium solution can be computed efficiently. In this paper, we study the problem in the non-convex regime and show that an ฮต-first order stationary point of the game can be computed when one of the player's objective can be optimized to global optimality efficiently. In particular, we first consider the case where the objective of one of the players satisfies the Polyak-ลojasiewicz (PL) condition.
On Optimal Generalizability in Parametric Learning
Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh
We consider the parametric learning problem, where the objective of the learner is determined by a parametric loss function. Employing empirical risk minimization with possibly regularization, the inferred parameter vector will be biased toward the training samples. Such bias is measured by the cross validation procedure in practice where the data set is partitioned into a training set used for training and a validation set, which is not used in training and is left to measure the outof-sample performance. A classical cross validation strategy is the leave-one-out cross validation (LOOCV) where one sample is left out for validation and training is done on the rest of the samples that are presented to the learner, and this process is repeated on all of the samples. LOOCV is rarely used in practice due to the high computational complexity. In this paper, we first develop a computationally efficient approximate LOOCV (ALOOCV) and provide theoretical guarantees for its performance. Then we use ALOOCV to provide an optimization algorithm for finding the regularizer in the empirical risk minimization framework. In our numerical experiments, we illustrate the accuracy and efficiency of ALOOCV as well as our proposed framework for the optimization of the regularizer.
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, Jason D. Lee
Generative Adversarial Networks (GANs) are one of the most practical methods for learning data distributions. A popular GAN formulation is based on the use of Wasserstein distance as a metric between probability distributions. Unfortunately, minimizing the Wasserstein distance between the data distribution and the generative model distribution is a computationally challenging problem as its objective is non-convex, non-smooth, and even hard to compute. In this work, we show that obtaining gradient information of the smoothed Wasserstein GAN formulation, which is based on regularized Optimal Transport (OT), is computationally effortless and hence one can apply first order optimization methods to minimize this objective. Consequently, we establish theoretical convergence guarantee to stationarity for a proposed class of GAN optimization algorithms. Unlike the original non-smooth formulation, our algorithm only requires solving the discriminator to approximate optimality. We apply our method to learning MNIST digits as well as CIFAR-10 images. Our experiments show that our method is computationally efficient and generates images comparable to the state of the art algorithms given the same architecture and computational power.
On Optimal Generalizability in Parametric Learning
Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh
We consider the parametric learning problem, where the objective of the learner is determined by a parametric loss function. Employing empirical risk minimization with possibly regularization, the inferred parameter vector will be biased toward the training samples. Such bias is measured by the cross validation procedure in practice where the data set is partitioned into a training set used for training and a validation set, which is not used in training and is left to measure the outof-sample performance. A classical cross validation strategy is the leave-one-out cross validation (LOOCV) where one sample is left out for validation and training is done on the rest of the samples that are presented to the learner, and this process is repeated on all of the samples. LOOCV is rarely used in practice due to the high computational complexity. In this paper, we first develop a computationally efficient approximate LOOCV (ALOOCV) and provide theoretical guarantees for its performance. Then we use ALOOCV to provide an optimization algorithm for finding the regularizer in the empirical risk minimization framework. In our numerical experiments, we illustrate the accuracy and efficiency of ALOOCV as well as our proposed framework for the optimization of the regularizer.