Mei, Sen
RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards
Li, Xinze, Mei, Sen, Liu, Zhenghao, Yan, Yukun, Wang, Shuo, Yu, Shi, Zeng, Zheni, Chen, Hao, Yu, Ge, Liu, Zhiyuan, Sun, Maosong, Xiong, Chenyan
Retrieval-Augmented Generation (RAG) has proven its effectiveness in mitigating hallucinations in Large Language Models (LLMs) by retrieving knowledge from external resources. To adapt LLMs for RAG pipelines, current approaches use instruction tuning to optimize LLMs, improving their ability to utilize retrieved knowledge. This supervised fine-tuning (SFT) approach focuses on equipping LLMs to handle diverse RAG tasks using different instructions. However, it trains RAG modules to overfit training signals and overlooks the varying data preferences among agents within the RAG system. In this paper, we propose a Differentiable Data Rewards (DDR) method, which end-to-end trains RAG systems by aligning data preferences between different RAG modules. DDR works by collecting the rewards to optimize each agent with a rollout method. This method prompts agents to sample some potential responses as perturbations, evaluates the impact of these perturbations on the whole RAG system, and subsequently optimizes the agent to produce outputs that improve the performance of the RAG system. Our experiments on various knowledge-intensive tasks demonstrate that DDR significantly outperforms the SFT method, particularly for LLMs with smaller-scale parameters that depend more on the retrieved knowledge. Additionally, DDR exhibits a stronger capability to align the data preference between RAG modules. The DDR method makes generation module more effective in extracting key information from documents and mitigating conflicts between parametric memory and external knowledge. All codes are available at https://github.com/OpenMatch/RAG-DDR.
Text Matching Improves Sequential Recommendation by Reducing Popularity Biases
Liu, Zhenghao, Mei, Sen, Xiong, Chenyan, Li, Xiaohua, Yu, Shi, Liu, Zhiyuan, Gu, Yu, Yu, Ge
This paper proposes Text mAtching based SequenTial rEcommendation model (TASTE), which maps items and users in an embedding space and recommends items by matching their text representations. TASTE verbalizes items and user-item interactions using identifiers and attributes of items. To better characterize user behaviors, TASTE additionally proposes an attention sparsity method, which enables TASTE to model longer user-item interactions by reducing the self-attention computations during encoding. Our experiments show that TASTE outperforms the state-of-the-art methods on widely used sequential recommendation datasets. TASTE alleviates the cold start problem by representing long-tail items using full-text modeling and bringing the benefits of pretrained language models to recommendation systems. Our further analyses illustrate that TASTE significantly improves the recommendation accuracy by reducing the popularity bias of previous item id based recommendation models and returning more appropriate and text-relevant items to satisfy users. All codes are available at https://github.com/OpenMatch/TASTE.