Goto

Collaborating Authors

 Mehta, Nikhil


Apollo: An Exploration of Video Understanding in Large Multimodal Models

arXiv.org Artificial Intelligence

Despite the rapid advancements in language and image-language modeling (Hoffmann et al., 2022; Brown, 2020; Yang et al., 2024; Liu et al., 2024a; Alayrac et al., 2022; Laurenรงon et al., 2024a; OpenAI, 2024), the development of video Large Multimodal Models (video-LMMs) has not kept pace. Videos provide a rich, dynamic information source, capturing nuanced temporal and spatial features beyond the reach of static images. However, video-LMMs remain under-explored, hampered by unique challenges: notably higher computational demands and a broader, more complex design space compared to their image-based counterparts (Li et al., 2023a, 2025; Liu et al., 2024d; Li et al., 2024b; Xu et al., 2024a). Many fundamental questions about video-LMM design remain unanswered: How should videos be sampled? Which vision encoders yield optimal representations? What are the best practices for resampling video tokens? Early approaches primarily extended image-LMMs directly (Xu et al., 2024b; Kim et al., 2024; Wu, 2024; Zhang et al., 2024e) or with video-specific fine-tuning (Li et al., 2023a; Zhang et al., 2023; Maaz et al., 2023). Recent methods introduced diverse design choices, such as longer context windows (Zhang et al., 2024e), multi-modality mixing (Li et al., 2024a,c), agent workflows (Wang et al., 2024c), self-training (Zohar et al., 2024), and more. Despite these efforts, the impact of these design decisions on video-LMM performance is poorly understood.


Performance of a large language model-Artificial Intelligence based chatbot for counseling patients with sexually transmitted infections and genital diseases

arXiv.org Artificial Intelligence

Introduction: Global burden of sexually transmitted infections (STIs) is rising out of proportion to specialists. Current chatbots like ChatGPT are not tailored for handling STI-related concerns out of the box. We developed Otiz, an Artificial Intelligence-based (AI-based) chatbot platform designed specifically for STI detection and counseling, and assessed its performance. Methods: Otiz employs a multi-agent system architecture based on GPT4-0613, leveraging large language model (LLM) and Deterministic Finite Automaton principles to provide contextually relevant, medically accurate, and empathetic responses. Its components include modules for general STI information, emotional recognition, Acute Stress Disorder detection, and psychotherapy. A question suggestion agent operates in parallel. Four STIs (anogenital warts, herpes, syphilis, urethritis/cervicitis) and 2 non-STIs (candidiasis, penile cancer) were evaluated using prompts mimicking patient language. Each prompt was independently graded by two venereologists conversing with Otiz as patient actors on 6 criteria using Numerical Rating Scale ranging from 0 (poor) to 5 (excellent). Results: Twenty-three venereologists did 60 evaluations of 30 prompts. Across STIs, Otiz scored highly on diagnostic accuracy (4.1-4.7), overall accuracy (4.3-4.6), correctness of information (5.0), comprehensibility (4.2-4.4), and empathy (4.5-4.8). However, relevance scores were lower (2.9-3.6), suggesting some redundancy. Diagnostic scores for non-STIs were lower (p=0.038). Inter-observer agreement was strong, with differences greater than 1 point occurring in only 12.7% of paired evaluations. Conclusions: AI conversational agents like Otiz can provide accurate, correct, discrete, non-judgmental, readily accessible and easily understandable STI-related information in an empathetic manner, and can alleviate the burden on healthcare systems.


STAR: A Simple Training-free Approach for Recommendations using Large Language Models

arXiv.org Artificial Intelligence

Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks. While the current state-of-the-art methods rely on fine-tuning LLMs to achieve optimal results, this process is costly and introduces significant engineering complexities. Conversely, methods that bypass fine-tuning and use LLMs directly are less resource-intensive but often fail to fully capture both semantic and collaborative information, resulting in sub-optimal performance compared to their fine-tuned counterparts. In this paper, we propose a Simple Training-free Approach for Recommendation (STAR), a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning. Our approach involves a retrieval stage that uses semantic embeddings from LLMs combined with collaborative user information to retrieve candidate items. We then apply an LLM for pairwise ranking to enhance next-item prediction. Experimental results on the Amazon Review dataset show competitive performance for next item prediction, even with our retrieval stage alone. Our full method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors relative to the best supervised models. This framework offers an effective alternative to traditional supervised models, highlighting the potential of LLMs in recommendation systems without extensive training or custom architectures.


Improving Hyperparameter Optimization with Checkpointed Model Weights

arXiv.org Machine Learning

When training deep learning models, the performance depends largely on the selected hyperparameters. However, hyperparameter optimization (HPO) is often one of the most expensive parts of model design. Classical HPO methods treat this as a black-box optimization problem. However, gray-box HPO methods, which incorporate more information about the setup, have emerged as a promising direction for more efficient optimization. For example, using intermediate loss evaluations to terminate bad selections. In this work, we propose an HPO method for neural networks using logged checkpoints of the trained weights to guide future hyperparameter selections. Our method, Forecasting Model Search (FMS), embeds weights into a Gaussian process deep kernel surrogate model, using a permutationinvariant graph metanetwork to be data-efficient with the logged network weights. To facilitate reproducibility and further research, we open-source our code.


Using RL to Identify Divisive Perspectives Improves LLMs Abilities to Identify Communities on Social Media

arXiv.org Artificial Intelligence

The large scale usage of social media, combined with its significant impact, has made it increasingly important to understand it. In particular, identifying user communities, can be helpful for many downstream tasks. However, particularly when models are trained on past data and tested on future, doing this is difficult. In this paper, we hypothesize to take advantage of Large Language Models (LLMs), to better identify user communities. Due to the fact that many LLMs, such as ChatGPT, are fixed and must be treated as black-boxes, we propose an approach to better prompt them, by training a smaller LLM to do this. We devise strategies to train this smaller model, showing how it can improve the larger LLMs ability to detect communities. Experimental results show improvements on Reddit and Twitter data, on the tasks of community detection, bot detection, and news media profiling.


Assessing and Verifying Task Utility in LLM-Powered Applications

arXiv.org Artificial Intelligence

The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks. However, a significant gap remains in assessing to what extent LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the need to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the effectiveness and robustness of AgentEval for two open source datasets including Math Problem solving and ALFWorld House-hold related tasks. For reproducibility purposes, we make the data, code and all the logs publicly available at https://bit.ly/3w3yKcS .


HyperMix: Out-of-Distribution Detection and Classification in Few-Shot Settings

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) detection is an important topic for real-world machine learning systems, but settings with limited in-distribution samples have been underexplored. Such few-shot OOD settings are challenging, as models have scarce opportunities to learn the data distribution before being tasked with identifying OOD samples. Indeed, we demonstrate that recent state-of-the-art OOD methods fail to outperform simple baselines in the few-shot setting. We thus propose a hypernetwork framework called HyperMix, using Mixup on the generated classifier parameters, as well as a natural out-of-episode outlier exposure technique that does not require an additional outlier dataset. We conduct experiments on CIFAR-FS and MiniImageNet, significantly outperforming other OOD methods in the few-shot regime.


Meta-Learned Attribute Self-Interaction Network for Continual and Generalized Zero-Shot Learning

arXiv.org Machine Learning

Zero-shot learning (ZSL) is a promising approach to generalizing a model to categories unseen during training by leveraging class attributes, but challenges remain. Recently, methods using generative models to combat bias towards classes seen during training have pushed state of the art, but these generative models can be slow or computationally expensive to train. Also, these generative models assume that the attribute vector of each unseen class is available a priori at training, which is not always practical. Additionally, while many previous ZSL methods assume a one-time adaptation to unseen classes, in reality, the world is always changing, necessitating a constant adjustment of deployed models. Models unprepared to handle a sequential stream of data are likely to experience catastrophic forgetting. We propose a Meta-learned Attribute self-Interaction Network (MAIN) for continual ZSL. By pairing attribute self-interaction trained using meta-learning with inverse regularization of the attribute encoder, we are able to outperform state-of-the-art results without leveraging the unseen class attributes while also being able to train our models substantially faster (>100x) than expensive generative-based approaches. We demonstrate this with experiments on five standard ZSL datasets (CUB, aPY, AWA1, AWA2, and SUN) in the generalized zero-shot learning and continual (fixed/dynamic) zero-shot learning settings. Extensive ablations and analyses demonstrate the efficacy of various components proposed.


Recommender Systems with Generative Retrieval

arXiv.org Artificial Intelligence

Modern recommender systems perform large-scale retrieval by first embedding queries and item candidates in the same unified space, followed by approximate nearest neighbor search to select top candidates given a query embedding. In this paper, we propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates. To that end, we create semantically meaningful tuple of codewords to serve as a Semantic ID for each item. Given Semantic IDs for items in a user session, a Transformer-based sequence-to-sequence model is trained to predict the Semantic ID of the next item that the user will interact with. To the best of our knowledge, this is the first Semantic ID-based generative model for recommendation tasks. We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets. In addition, we show that incorporating Semantic IDs into the sequence-to-sequence model enhances its ability to generalize, as evidenced by the improved retrieval performance observed for items with no prior interaction history.


Interactively Learning Social Media Representations Improves News Source Factuality Detection

arXiv.org Artificial Intelligence

The rise of social media has enabled the widespread propagation of fake news, text that is published with an intent to spread misinformation and sway beliefs. Rapidly detecting fake news, especially as new events arise, is important to prevent misinformation. While prior works have tackled this problem using supervised learning systems, automatedly modeling the complexities of the social media landscape that enables the spread of fake news is challenging. On the contrary, having humans fact check all news is not scalable. Thus, in this paper, we propose to approach this problem interactively, where humans can interact to help an automated system learn a better social media representation quality. On real world events, our experiments show performance improvements in detecting factuality of news sources, even after few human interactions.