Goto

Collaborating Authors

 Mehta, Neville


Autonomous Learning of Action Models for Planning

Neural Information Processing Systems

This paper introduces two new frameworks for learning action models for planning. In the mistake-bounded planning framework, the learner has access to a planner for the given model representation, a simulator, and a planning problem generator, and aims to learn a model with at most a polynomial number of faulty plans. In the planned exploration framework, the learner does not have access to a problem generator and must instead design its own problems, plan for them, and converge with at most a polynomial number of planning attempts. The paper reduces learning in these frameworks to concept learning with one-sided error and provides algorithms for successful learning in both frameworks. A specific family of hypothesis spaces is shown to be efficiently learnable in both the frameworks.


Automatic Discovery and Transfer of Task Hierarchies in Reinforcement Learning

AI Magazine

A principal one among them is the existence of multiple domains that share the same underlying causal structure for actions. We describe an approach that exploits this shared causal structure to discover a hierarchical task structure in a source domain, which in turn speeds up learning of task execution knowledge in a new target domain. Our approach is theoretically justified and compares favorably to manually designed task hierarchies in learning efficiency in the target domain. We demonstrate that causally motivated task hierarchies transfer more robustly than other kinds of detailed knowledge that depend on the idiosyncrasies of the source domain and are hence less transferable.


Automatic Discovery and Transfer of Task Hierarchies in Reinforcement Learning

AI Magazine

Sequential decision tasks present many opportunities for the study of transfer learning. A principal one among them is the existence of multiple domains that share the same underlying causal structure for actions. We describe an approach that exploits this shared causal structure to discover a hierarchical task structure in a source domain, which in turn speeds up learning of task execution knowledge in a new target domain. Our approach is theoretically justified and compares favorably to manually designed task hierarchies in learning efficiency in the target domain. We demonstrate that causally motivated task hierarchies transfer more robustly than other kinds of detailed knowledge that depend on the idiosyncrasies of the source domain and are hence less transferable.