Mehta, Ankit
Enhancing Retrieval for ESGLLM via ESG-CID -- A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS
Ahmed, Shafiuddin Rehan, Shah, Ankit Parag, Tran, Quan Hung, Khetan, Vivek, Kang, Sukryool, Mehta, Ankit, Bao, Yujia, Wei, Wei
Climate change has intensified the need for transparency and accountability in organizational practices, making Environmental, Social, and Governance (ESG) reporting increasingly crucial. Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting, yet generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles. To facilitate ESG report automation, Retrieval-Augmented Generation (RAG) systems can be employed, but their development is hindered by a lack of labeled data suitable for training retrieval models. In this paper, we leverage an underutilized source of weak supervision -- the disclosure content index found in past ESG reports -- to create a comprehensive dataset, ESG-CID, for both GRI and ESRS standards. By extracting mappings between specific disclosure requirements and corresponding report sections, and refining them using a Large Language Model as a judge, we generate a robust training and evaluation set. We benchmark popular embedding models on this dataset and show that fine-tuning BERT-based models can outperform commercial embeddings and leading public models, even under temporal data splits for cross-report style transfer from GRI to ESRS
Harnessing Business and Media Insights with Large Language Models
Bao, Yujia, Shah, Ankit Parag, Narang, Neeru, Rivers, Jonathan, Maksey, Rajeev, Guan, Lan, Barrere, Louise N., Evenson, Shelley, Basole, Rahul, Miao, Connie, Mehta, Ankit, Boulay, Fabien, Park, Su Min, Pearson, Natalie E., Joy, Eldhose, He, Tiger, Thakur, Sumiran, Ghosal, Koustav, On, Josh, Morrison, Phoebe, Major, Tim, Wang, Eva Siqi, Escobar, Gina, Wei, Jiaheng, Weerasooriya, Tharindu Cyril, Song, Queena, Lashkevich, Daria, Chen, Clare, Kim, Gyuhak, Yin, Dengpan, Hejna, Don, Nomeli, Mo, Wei, Wei
This paper introduces Fortune Analytics Language Model (FALM). FALM empowers users with direct access to comprehensive business analysis, including market trends, company performance metrics, and expert insights. Unlike generic LLMs, FALM leverages a curated knowledge base built from professional journalism, enabling it to deliver precise and in-depth answers to intricate business questions. Users can further leverage natural language queries to directly visualize financial data, generating insightful charts and graphs to understand trends across diverse business sectors clearly. FALM fosters user trust and ensures output accuracy through three novel methods: 1) Time-aware reasoning guarantees accurate event registration and prioritizes recent updates. 2) Thematic trend analysis explicitly examines topic evolution over time, providing insights into emerging business landscapes. 3) Content referencing and task decomposition enhance answer fidelity and data visualization accuracy. We conduct both automated and human evaluations, demonstrating FALM's significant performance improvements over baseline methods while prioritizing responsible AI practices. These benchmarks establish FALM as a cutting-edge LLM in the business and media domains, with exceptional accuracy and trustworthiness.