Not enough data to create a plot.
Try a different view from the menu above.
Mehryar Mohri
Boosting with Abstention
Corinna Cortes, Giulia DeSalvo, Mehryar Mohri
We present a new boosting algorithm for the key scenario of binary classification with abstention where the algorithm can abstain from predicting the label of a point, at the price of a fixed cost. At each round, our algorithm selects a pair of functions, a base predictor and a base abstention function. We define convex upper bounds for the natural loss function associated to this problem, which we prove to be calibrated with respect to the Bayes solution. Our algorithm benefits from general margin-based learning guarantees which we derive for ensembles of pairs of base predictor and abstention functions, in terms of the Rademacher complexities of the corresponding function classes. We give convergence guarantees for our algorithm along with a linear-time weak-learning algorithm for abstention stumps. We also report the results of several experiments suggesting that our algorithm provides a significant improvement in practice over two confidence-based algorithms.
Structured Prediction Theory Based on Factor Graph Complexity
Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Scott Yang
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction problems. Our guarantees are expressed in terms of a data-dependent complexity measure, factor graph complexity, which we show can be estimated from data and bounded in terms of familiar quantities for several commonly used hypothesis sets along with a sparsity measure for features and graphs. Our proof techniques include generalizations of Talagrand's contraction lemma that can be of independent interest. We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and show that learning is possible even with complex factor graphs. We present new learning bounds for this advanced setting, which we use to design two new algorithms, Voted Conditional Random Field (VCRF) and Voted Structured Boosting (StructBoost). These algorithms can make use of complex features and factor graphs and yet benefit from favorable learning guarantees. We also report the results of experiments with VCRF on several datasets to validate our theory.
Parameter-Free Online Learning via Model Selection
Dylan J. Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan
We introduce an efficient algorithmic framework for model selection in online learning, also known as parameter-free online learning. Departing from previous work, which has focused on highly structured function classes such as nested balls in Hilbert space, we propose a generic meta-algorithm framework that achieves online model selection oracle inequalities under minimal structural assumptions. We give the first computationally efficient parameter-free algorithms that work in arbitrary Banach spaces under mild smoothness assumptions; previous results applied only to Hilbert spaces.
Discriminative State Space Models
Vitaly Kuznetsov, Mehryar Mohri
We introduce and analyze Discriminative State-Space Models for forecasting nonstationary time series. We provide data-dependent generalization guarantees for learning these models based on the recently introduced notion of discrepancy. We provide an in-depth analysis of the complexity of such models. We also study the generalization guarantees for several structural risk minimization approaches to this problem and provide an efficient implementation for one of them which is based on a convex objective.
Policy Regret in Repeated Games
Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, Mehryar Mohri
The notion of policy regret in online learning is a well defined performance measure for the common scenario of adaptive adversaries, which more traditional quantities such as external regret do not take into account. We revisit the notion of policy regret and first show that there are online learning settings in which policy regret and external regret are incompatible: any sequence of play that achieves a favorable regret with respect to one definition must do poorly with respect to the other. We then focus on the game-theoretic setting where the adversary is a self-interested agent. In that setting, we show that external regret and policy regret are not in conflict and, in fact, that a wide class of algorithms can ensure a favorable regret with respect to both definitions, so long as the adversary is also using such an algorithm. We also show that the sequence of play of no-policy regret algorithms converges to a policy equilibrium, a new notion of equilibrium that we introduce. Relating this back to external regret, we show that coarse correlated equilibria, which no-external regret players converge to, are a strict subset of policy equilibria. Thus, in game-theoretic settings, every sequence of play with no external regret also admits no policy regret, but the converse does not hold.
Algorithms and Theory for Multiple-Source Adaptation
Judy Hoffman, Mehryar Mohri, Ningshan Zhang
We present a number of novel contributions to the multiple-source adaptation problem. We derive new normalized solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. We also provide new guarantees that hold in the case where the conditional probabilities for the source domains are distinct. Moreover, we give new algorithms for determining the distributionweighted combination solution for the cross-entropy loss and other losses. We report the results of a series of experiments with real-world datasets. We find that our algorithm outperforms competing approaches by producing a single robust model that performs well on any target mixture distribution. Altogether, our theory, algorithms, and empirical results provide a full solution for the multiple-source adaptation problem with very practical benefits.
Online Learning with Transductive Regret
Mehryar Mohri, Scott Yang
Discriminative State Space Models
Vitaly Kuznetsov, Mehryar Mohri
We introduce and analyze Discriminative State-Space Models for forecasting nonstationary time series. We provide data-dependent generalization guarantees for learning these models based on the recently introduced notion of discrepancy. We provide an in-depth analysis of the complexity of such models. We also study the generalization guarantees for several structural risk minimization approaches to this problem and provide an efficient implementation for one of them which is based on a convex objective.