Goto

Collaborating Authors

 Mehrotra, Sharad


Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) are widely applied in graph data modeling. However, existing GNNs are often trained in a task-driven manner that fails to fully capture the intrinsic nature of the graph structure, resulting in sub-optimal node and graph representations. To address this limitation, we propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of GNNs, which is inspired by prompt mechanisms in natural language processing. GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks, producing higher-quality node and graph representations. In extensive experiments on eleven real-world datasets, after being trained by GPL, GNNs significantly outperform their original performance on node classification, graph classification, and edge prediction tasks (up to 10.28%, 16.5%, and 24.15%, respectively). By allowing GNNs to capture the inherent structural prompts of graphs in GPL, they can alleviate the issue of over-smooth and achieve new state-of-the-art performances, which introduces a novel and effective direction for GNN research with potential applications in various domains.


SES: Bridging the Gap Between Explainability and Prediction of Graph Neural Networks

arXiv.org Artificial Intelligence

Despite the Graph Neural Networks' (GNNs) proficiency in analyzing graph data, achieving high-accuracy and interpretable predictions remains challenging. Existing GNN interpreters typically provide post-hoc explanations disjointed from GNNs' predictions, resulting in misrepresentations. Self-explainable GNNs offer built-in explanations during the training process. However, they cannot exploit the explanatory outcomes to augment prediction performance, and they fail to provide high-quality explanations of node features and require additional processes to generate explainable subgraphs, which is costly. To address the aforementioned limitations, we propose a self-explained and self-supervised graph neural network (SES) to bridge the gap between explainability and prediction. SES comprises two processes: explainable training and enhanced predictive learning. During explainable training, SES employs a global mask generator co-trained with a graph encoder and directly produces crucial structure and feature masks, reducing time consumption and providing node feature and subgraph explanations. In the enhanced predictive learning phase, mask-based positive-negative pairs are constructed utilizing the explanations to compute a triplet loss and enhance the node representations by contrastive learning.


Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding

arXiv.org Artificial Intelligence

We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM, thereby maintaining output quality. The proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its fine-tuned models demonstrated a speedup up to 1.73$\times$.


Federated Analytics: A survey

arXiv.org Artificial Intelligence

Federated analytics (FA) is a privacy-preserving framework for computing data analytics over multiple remote parties (e.g., mobile devices) or silo-ed institutional entities (e.g., hospitals, banks) without sharing the data among parties. Motivated by the practical use cases of federated analytics, we follow a systematic discussion on federated analytics in this article. In particular, we discuss the unique characteristics of federated analytics and how it differs from federated learning. We also explore a wide range of FA queries and discuss various existing solutions and potential use case applications for different FA queries.


Semi-Supervised Few-Shot Learning for Dual Question-Answer Extraction

arXiv.org Artificial Intelligence

This paper addresses the problem of key phrase extraction from sentences. Existing state-of-the-art supervised methods require large amounts of annotated data to achieve good performance and generalization. Collecting labeled data is, however, often expensive. In this paper, we redefine the problem as question-answer extraction, and present SAMIE: Self-Asking Model for Information Ixtraction, a semi-supervised model which dually learns to ask and to answer questions by itself. Briefly, given a sentence $s$ and an answer $a$, the model needs to choose the most appropriate question $\hat q$; meanwhile, for the given sentence $s$ and same question $\hat q$ selected in the previous step, the model will predict an answer $\hat a$. The model can support few-shot learning with very limited supervision. It can also be used to perform clustering analysis when no supervision is provided. Experimental results show that the proposed method outperforms typical supervised methods especially when given little labeled data.