Goto

Collaborating Authors

 Medina, Andres Munoz


Measuring Re-identification Risk

arXiv.org Artificial Intelligence

In this work, we present a new theoretical framework to measure re-identification risk in such user representations. Our framework, based on hypothesis testing, formally bounds the probability that an attacker may be able to obtain the identity of a user from their representation. As an application, we show how our framework is general enough to model important real-world applications such as the Chrome's Topics API for interest-based advertising. We complement our theoretical bounds by showing provably good attack algorithms for re-identification that we use to estimate the re-identification risk in the Topics API. We believe this work provides a rigorous and interpretable notion of re-identification risk and a framework to measure it that can be used to inform real-world applications.


New Analysis and Algorithm for Learning with Drifting Distributions

arXiv.org Machine Learning

We present a new analysis of the problem of learning with drifting distributions in the batch setting using the notion of discrepancy. We prove learning bounds based on the Rademacher complexity of the hypothesis set and the discrepancy of distributions both for a drifting PAC scenario and a tracking scenario. Our bounds are always tighter and in some cases substantially improve upon previous ones based on the $L_1$ distance. We also present a generalization of the standard on-line to batch conversion to the drifting scenario in terms of the discrepancy and arbitrary convex combinations of hypotheses. We introduce a new algorithm exploiting these learning guarantees, which we show can be formulated as a simple QP. Finally, we report the results of preliminary experiments demonstrating the benefits of this algorithm.